Wedyan2023 commited on
Commit
13a0aa8
·
verified ·
1 Parent(s): 2ce38eb

Create app2.py

Browse files
Files changed (1) hide show
  1. app2.py +164 -0
app2.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #""" Simple Chatbot
2
+ #@author: Nigel Gebodh
3
+ #@email: [email protected]
4
+ #"""
5
+ """ Simple Chatbot
6
+ @author: Wedyan2023
7
+ @email: [email protected]
8
+ """
9
+
10
+ import numpy as np
11
+ import streamlit as st
12
+ from openai import OpenAI
13
+ import os
14
+ from dotenv import load_dotenv
15
+ import random
16
+ os.environ["BROWSER_GATHERUSAGESTATS"] = "false"
17
+
18
+ load_dotenv()
19
+ ## Embedding Using Huggingface
20
+ #huggingface_embeddings=HuggingFaceBgeEmbeddings(
21
+ #model_name="BAAI/bge-small-en-v1.5", #sentence-transformers/all-MiniLM-l6-v2
22
+ #model_kwargs={'device':'cpu'},
23
+ #encode_kwargs={'normalize_embeddings':True}
24
+
25
+ #)
26
+
27
+ # Initialize the client
28
+ client = OpenAI(
29
+ base_url="https://api-inference.huggingface.co/v1",
30
+ #api_key=os.environ.get('HUGGINGFACE_API_TOKEN') # Add your Huggingface token here
31
+ api_key=os.environ.get('HF_TOKEN') # Add your Huggingface token here
32
+ )
33
+
34
+ # Supported models
35
+ model_links = {
36
+ "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
37
+ }
38
+
39
+ # Random dog images for error messages
40
+ #random_dog = [
41
+ #"0f476473-2d8b-415e-b944-483768418a95.jpg",
42
+ #"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
43
+ #"526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
44
+ # "1326984c-39b0-492c-a773-f120d747a7e2.jpg"
45
+ #]
46
+
47
+ # Reset conversation
48
+ def reset_conversation():
49
+ st.session_state.conversation = []
50
+ st.session_state.messages = []
51
+ return None
52
+
53
+ # Define the available models
54
+ models = [key for key in model_links.keys()]
55
+
56
+ # Sidebar for model selection
57
+ selected_model = st.sidebar.selectbox("Select Model", models)
58
+
59
+ # Temperature slider
60
+ temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
61
+
62
+ # Reset button
63
+ st.sidebar.button('Reset Chat', on_click=reset_conversation)
64
+
65
+ # Model description
66
+ st.sidebar.write(f"You're now chatting with **{selected_model}**")
67
+ st.sidebar.markdown("*Generated content may be inaccurate or false.*")
68
+
69
+ # Chat initialization
70
+ if "messages" not in st.session_state:
71
+ st.session_state.messages = []
72
+
73
+ # Display chat messages
74
+ for message in st.session_state.messages:
75
+ with st.chat_message(message["role"]):
76
+ st.markdown(message["content"])
77
+
78
+ # Main logic to choose between data generation and data labeling
79
+ task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
80
+
81
+ if task_choice == "Data Generation":
82
+ classification_type = st.selectbox(
83
+ "Choose Classification Type",
84
+ ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
85
+ )
86
+
87
+ if classification_type == "Sentiment Analysis":
88
+ st.write("Sentiment Analysis: Positive, Negative, Neutral")
89
+ labels = ["Positive", "Negative", "Neutral"]
90
+ elif classification_type == "Binary Classification":
91
+ label_1 = st.text_input("Enter first class")
92
+ label_2 = st.text_input("Enter second class")
93
+ labels = [label_1, label_2]
94
+ elif classification_type == "Multi-Class Classification":
95
+ num_classes = st.slider("How many classes?", 3, 10, 3)
96
+ labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
97
+
98
+ domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
99
+ if domain == "Custom":
100
+ domain = st.text_input("Specify custom domain")
101
+
102
+ min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
103
+ max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
104
+
105
+ few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
106
+ if few_shot == "Yes":
107
+ num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
108
+ few_shot_examples = [
109
+ {"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
110
+ for i in range(num_examples)
111
+ ]
112
+ else:
113
+ few_shot_examples = []
114
+
115
+ # Ask the user how many examples they need
116
+ num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10)
117
+
118
+ # User prompt text field
119
+ user_prompt = st.text_area("Enter your prompt to guide example generation", "")
120
+
121
+ # System prompt generation
122
+ system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
123
+ if few_shot_examples:
124
+ system_prompt += "Use the following few-shot examples as a reference:\n"
125
+ for example in few_shot_examples:
126
+ system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
127
+ system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
128
+ system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
129
+ system_prompt += f"Use the labels specified: {', '.join(labels)}.\n"
130
+ if user_prompt:
131
+ system_prompt += f"Additional instructions: {user_prompt}\n"
132
+
133
+ st.write("System Prompt:")
134
+ st.code(system_prompt)
135
+
136
+ if st.button("Generate Examples"):
137
+ # Generate examples by concatenating all inputs and sending it to the model
138
+ with st.spinner("Generating..."):
139
+ st.session_state.messages.append({"role": "system", "content": system_prompt})
140
+
141
+ try:
142
+ stream = client.chat.completions.create(
143
+ model=model_links[selected_model],
144
+ messages=[
145
+ {"role": m["role"], "content": m["content"]}
146
+ for m in st.session_state.messages
147
+ ],
148
+ temperature=temp_values,
149
+ stream=True,
150
+ max_tokens=3000,
151
+ )
152
+ response = st.write_stream(stream)
153
+ except Exception as e:
154
+ response = "Error during generation."
155
+ random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
156
+ st.image(random_dog_pick)
157
+ st.write(e)
158
+
159
+ st.session_state.messages.append({"role": "assistant", "content": response})
160
+
161
+ else:
162
+ # Data labeling workflow (for future implementation based on classification)
163
+ st.write("Data Labeling functionality will go here.")
164
+