Wedyan2023 commited on
Commit
1d87dfc
·
verified ·
1 Parent(s): a352b2f

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -165
app.py DELETED
@@ -1,165 +0,0 @@
1
- #""" Simple Chatbot
2
- #@author: Nigel Gebodh
3
- #@email: [email protected]
4
- #"""
5
- """ Simple Chatbot
6
- @author: Wedyan2023
7
- @email: [email protected]
8
- """
9
-
10
- import numpy as np
11
- import streamlit as st
12
- from openai import OpenAI
13
- import os
14
- from dotenv import load_dotenv
15
- import random
16
- os.environ["BROWSER_GATHERUSAGESTATS"] = "false"
17
-
18
- load_dotenv()
19
- ## Embedding Using Huggingface
20
- #huggingface_embeddings=HuggingFaceBgeEmbeddings(
21
- #model_name="BAAI/bge-small-en-v1.5", #sentence-transformers/all-MiniLM-l6-v2
22
- #model_kwargs={'device':'cpu'},
23
- #encode_kwargs={'normalize_embeddings':True}
24
-
25
- #)
26
-
27
- # Initialize the client
28
- client = OpenAI(
29
- base_url="https://api-inference.huggingface.co/v1",
30
- #api_key=os.environ.get('HUGGINGFACE_API_TOKEN') # Add your Huggingface token here
31
- api_key=os.environ.get('TOKEN2') # Add your Huggingface token here
32
- )
33
-
34
- # Supported models
35
- model_links = {
36
- "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
37
- }
38
-
39
- # Random dog images for error messages
40
- #random_dog = [
41
- #"0f476473-2d8b-415e-b944-483768418a95.jpg",
42
- #"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
43
- #"526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
44
- # "1326984c-39b0-492c-a773-f120d747a7e2.jpg"
45
- #]
46
-
47
- # Reset conversation
48
- def reset_conversation():
49
- st.session_state.conversation = []
50
- st.session_state.messages = []
51
- return None
52
-
53
- # Define the available models
54
- models = [key for key in model_links.keys()]
55
-
56
- # Sidebar for model selection
57
- selected_model = st.sidebar.selectbox("Select Model", models)
58
-
59
- # Temperature slider
60
- temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
61
-
62
- # Reset button
63
- st.sidebar.button('Reset Chat', on_click=reset_conversation)
64
-
65
- # Model description
66
- st.sidebar.write(f"You're now chatting with **{selected_model}**")
67
- st.sidebar.markdown("*Generated content may be inaccurate or false.*")
68
-
69
- # Chat initialization
70
- if "messages" not in st.session_state:
71
- st.session_state.messages = []
72
-
73
- # Display chat messages
74
- for message in st.session_state.messages:
75
- with st.chat_message(message["role"]):
76
- st.markdown(message["content"])
77
-
78
- # Main logic to choose between data generation and data labeling
79
- task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
80
-
81
- if task_choice == "Data Generation":
82
- classification_type = st.selectbox(
83
- "Choose Classification Type",
84
- ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
85
- )
86
-
87
- if classification_type == "Sentiment Analysis":
88
- st.write("Sentiment Analysis: Positive, Negative, Neutral")
89
- labels = ["Positive", "Negative", "Neutral"]
90
- elif classification_type == "Binary Classification":
91
- label_1 = st.text_input("Enter first class")
92
- label_2 = st.text_input("Enter second class")
93
- labels = [label_1, label_2]
94
- elif classification_type == "Multi-Class Classification":
95
- num_classes = st.slider("How many classes?", 3, 10, 3)
96
- labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
97
-
98
- domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
99
- if domain == "Custom":
100
- domain = st.text_input("Specify custom domain")
101
-
102
- min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
103
- max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
104
-
105
- few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
106
- if few_shot == "Yes":
107
- num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
108
- few_shot_examples = [
109
- {"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
110
- for i in range(num_examples)
111
- ]
112
- else:
113
- few_shot_examples = []
114
-
115
- # Ask the user how many examples they need
116
- num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10)
117
-
118
- # User prompt text field
119
- user_prompt = st.text_area("Enter your prompt to guide example generation", "")
120
-
121
- # System prompt generation
122
- system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
123
- if few_shot_examples:
124
- system_prompt += "Use the following few-shot examples as a reference:\n"
125
- for example in few_shot_examples:
126
- system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
127
- system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
128
- system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
129
- system_prompt += f"Use the labels specified: {', '.join(labels)}.\n"
130
- if user_prompt:
131
- system_prompt += f"Additional instructions: {user_prompt}\n"
132
-
133
- st.write("System Prompt:")
134
- st.code(system_prompt)
135
-
136
- if st.button("Generate Examples"):
137
- # Generate examples by concatenating all inputs and sending it to the model
138
- with st.spinner("Generating..."):
139
- st.session_state.messages.append({"role": "system", "content": system_prompt})
140
-
141
- try:
142
- stream = client.chat.completions.create(
143
- model=model_links[selected_model],
144
- messages=[
145
- {"role": m["role"], "content": m["content"]}
146
- for m in st.session_state.messages
147
- ],
148
- temperature=temp_values,
149
- stream=True,
150
- max_tokens=3000,
151
- )
152
- response = st.write_stream(stream)
153
- except Exception as e:
154
- response = "Error during generation."
155
- random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
156
- st.image(random_dog_pick)
157
- st.write(e)
158
-
159
- st.session_state.messages.append({"role": "assistant", "content": response})
160
-
161
- else:
162
- # Data labeling workflow (for future implementation based on classification)
163
- st.write("Data Labeling functionality will go here.")
164
-
165
-