Wedyan2023 commited on
Commit
1ea71c8
·
verified ·
1 Parent(s): 294279a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +96 -88
app.py CHANGED
@@ -10,6 +10,7 @@ import numpy as np
10
  import streamlit as st
11
  from openai import OpenAI
12
  import os
 
13
  from dotenv import load_dotenv
14
 
15
  load_dotenv()
@@ -17,124 +18,131 @@ load_dotenv()
17
  # Initialize the client
18
  client = OpenAI(
19
  base_url="https://api-inference.huggingface.co/v1",
20
- #api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token
21
- api_key=os.environ.get('HF_TOKEN') # Replace with your token
22
-
23
  )
24
 
25
- # Function to reset conversation
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  def reset_conversation():
27
  st.session_state.conversation = []
28
  st.session_state.messages = []
29
  return None
30
 
31
- # Initialize session state for 'messages' if it doesn't exist
32
- if 'messages' not in st.session_state:
33
- st.session_state.messages = []
34
 
35
- # Define classification options
36
- classification_types = ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
37
 
38
- # Start with a selection between data generation or labeling
39
- st.sidebar.write("Choose Task:")
40
- task = st.sidebar.radio("Do you want to generate data or label data?", ("Data Generation", "Data Labeling"))
41
 
42
- # If the user selects Data Labeling
43
- if task == "Data Labeling":
44
- st.sidebar.write("Choose Classification Type:")
45
- classification_type = st.sidebar.radio("Select a classification type:", classification_types)
46
 
47
- # Handle Sentiment Analysis
48
- if classification_type == "Sentiment Analysis":
49
- st.sidebar.write("Classes: Positive, Negative, Neutral (fixed)")
50
- class_labels = ["Positive", "Negative", "Neutral"]
51
 
52
- # Handle Binary Classification
53
- elif classification_type == "Binary Classification":
54
- class_1 = st.sidebar.text_input("Enter Class 1:")
55
- class_2 = st.sidebar.text_input("Enter Class 2:")
56
- class_labels = [class_1, class_2]
57
-
58
- # Handle Multi-Class Classification
59
- elif classification_type == "Multi-Class Classification":
60
- class_labels = []
61
- for i in range(1, 11): # Allow up to 10 classes
62
- label = st.sidebar.text_input(f"Enter Class {i} (leave blank to stop):")
63
- if label:
64
- class_labels.append(label)
65
- else:
66
- break
67
-
68
- # Domain selection
69
- st.sidebar.write("Specify the Domain:")
70
- domain = st.sidebar.radio("Choose a domain:", ("Restaurant Reviews", "E-commerce Reviews", "Custom"))
71
- if domain == "Custom":
72
- domain = st.sidebar.text_input("Enter Custom Domain:")
73
-
74
- # Specify example length
75
- st.sidebar.write("Specify the Length of Examples:")
76
- min_words = st.sidebar.number_input("Minimum word count (10 to 90):", 10, 90, 10)
77
- max_words = st.sidebar.number_input("Maximum word count (10 to 90):", min_words, 90, 50)
78
-
79
- # Few-shot examples option
80
- use_few_shot = st.sidebar.radio("Do you want to use few-shot examples?", ("Yes", "No"))
81
- few_shot_examples = []
82
- if use_few_shot == "Yes":
83
- num_examples = st.sidebar.number_input("How many few-shot examples? (1 to 5)", 1, 5, 1)
84
- for i in range(num_examples):
85
- example_text = st.text_area(f"Enter example {i+1}:")
86
- example_label = st.selectbox(f"Select the label for example {i+1}:", class_labels)
87
- few_shot_examples.append({"text": example_text, "label": example_label})
88
-
89
- # Generate the system prompt based on classification type
90
- if classification_type == "Sentiment Analysis":
91
- system_prompt = f"You are a propositional sentiment analysis expert. Your role is to generate sentiment analysis reviews based on the data entered and few-shot examples provided, if any, for the domain '{domain}'."
92
- elif classification_type == "Binary Classification":
93
- system_prompt = f"You are an expert in binary classification. Your task is to label examples for the domain '{domain}' with either '{class_1}' or '{class_2}', based on the data provided."
94
- else: # Multi-Class Classification
95
- system_prompt = f"You are an expert in multi-class classification. Your role is to label examples for the domain '{domain}' using the provided class labels."
96
 
97
- st.sidebar.write("System Prompt:")
98
- st.sidebar.write(system_prompt)
 
 
99
 
100
- # Step-by-step thinking
101
- st.sidebar.write("Generated Data:")
102
- st.sidebar.write("Think step by step to ensure accuracy in classification.")
103
 
104
- # Accept user input for generating or labeling data
105
- if prompt := st.chat_input(f"Hi, I'm ready to help with {classification_type} for {domain}. Ask me a question or provide data to classify."):
 
 
 
106
 
107
- # Display user message in chat message container
108
- with st.chat_message("user"):
109
- st.markdown(prompt)
110
- # Add user message to chat history
111
- st.session_state.messages.append({"role": "user", "content": prompt})
 
 
 
 
 
112
 
113
- # Display assistant response in chat message container
114
- with st.chat_message("assistant"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
116
  try:
117
- # Stream the response from the model
118
  stream = client.chat.completions.create(
119
- model="meta-llama/Meta-Llama-3-8B-Instruct",
120
  messages=[
121
  {"role": m["role"], "content": m["content"]}
122
  for m in st.session_state.messages
123
  ],
124
- temperature=0.5,
125
  stream=True,
126
  max_tokens=3000,
127
  )
128
-
129
  response = st.write_stream(stream)
130
-
131
  except Exception as e:
132
- response = "😵‍💫 Something went wrong. Try again later."
133
- st.write(response)
 
 
134
 
135
- st.session_state.messages.append({"role": "assistant", "content": response})
136
 
137
- # If the user selects Data Generation
138
  else:
139
- st.sidebar.write("This feature will allow you to generate new data. Coming soon!")
 
140
 
 
10
  import streamlit as st
11
  from openai import OpenAI
12
  import os
13
+ import sys
14
  from dotenv import load_dotenv
15
 
16
  load_dotenv()
 
18
  # Initialize the client
19
  client = OpenAI(
20
  base_url="https://api-inference.huggingface.co/v1",
21
+ api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Add your Huggingface token here
 
 
22
  )
23
 
24
+ # Supported models
25
+ model_links = {
26
+ "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
27
+ }
28
+
29
+ # Random dog images for error messages
30
+ random_dog = [
31
+ "0f476473-2d8b-415e-b944-483768418a95.jpg",
32
+ "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
33
+ "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
34
+ "1326984c-39b0-492c-a773-f120d747a7e2.jpg"
35
+ ]
36
+
37
+ # Reset conversation
38
  def reset_conversation():
39
  st.session_state.conversation = []
40
  st.session_state.messages = []
41
  return None
42
 
43
+ # Define the available models
44
+ models = [key for key in model_links.keys()]
 
45
 
46
+ # Sidebar for model selection
47
+ selected_model = st.sidebar.selectbox("Select Model", models)
48
 
49
+ # Temperature slider
50
+ temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
 
51
 
52
+ # Reset button
53
+ st.sidebar.button('Reset Chat', on_click=reset_conversation)
 
 
54
 
55
+ # Model description
56
+ st.sidebar.write(f"You're now chatting with **{selected_model}**")
57
+ st.sidebar.markdown("*Generated content may be inaccurate or false.*")
 
58
 
59
+ # Chat initialization
60
+ if "messages" not in st.session_state:
61
+ st.session_state.messages = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
+ # Display chat messages
64
+ for message in st.session_state.messages:
65
+ with st.chat_message(message["role"]):
66
+ st.markdown(message["content"])
67
 
68
+ # Main logic to choose between data generation and data labeling
69
+ task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
 
70
 
71
+ if task_choice == "Data Generation":
72
+ classification_type = st.selectbox(
73
+ "Choose Classification Type",
74
+ ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
75
+ )
76
 
77
+ if classification_type == "Sentiment Analysis":
78
+ st.write("Sentiment Analysis: Positive, Negative, Neutral")
79
+ labels = ["Positive", "Negative", "Neutral"]
80
+ elif classification_type == "Binary Classification":
81
+ label_1 = st.text_input("Enter first class")
82
+ label_2 = st.text_input("Enter second class")
83
+ labels = [label_1, label_2]
84
+ elif classification_type == "Multi-Class Classification":
85
+ num_classes = st.slider("How many classes?", 3, 10, 3)
86
+ labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
87
 
88
+ domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
89
+ if domain == "Custom":
90
+ domain = st.text_input("Specify custom domain")
91
+
92
+ min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
93
+ max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
94
+
95
+ few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
96
+ if few_shot == "Yes":
97
+ num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
98
+ few_shot_examples = [
99
+ {"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
100
+ for i in range(num_examples)
101
+ ]
102
+ else:
103
+ few_shot_examples = []
104
+
105
+ # Ask the user how many examples they need
106
+ num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=50, value=10)
107
+
108
+ # System prompt generation
109
+ system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
110
+ if few_shot_examples:
111
+ system_prompt += "Use the following few-shot examples as a reference:\n"
112
+ for example in few_shot_examples:
113
+ system_prompt += f"Example: {example['content']}, Label: {example['label']}\n"
114
+ system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
115
+ system_prompt += "Think step by step while generating the examples."
116
+
117
+ st.write("System Prompt:")
118
+ st.code(system_prompt)
119
+
120
+ if st.button("Generate Examples"):
121
+ # Generate examples by concatenating all inputs and sending it to the model
122
+ with st.spinner("Generating..."):
123
+ st.session_state.messages.append({"role": "system", "content": system_prompt})
124
 
125
  try:
 
126
  stream = client.chat.completions.create(
127
+ model=model_links[selected_model],
128
  messages=[
129
  {"role": m["role"], "content": m["content"]}
130
  for m in st.session_state.messages
131
  ],
132
+ temperature=temp_values,
133
  stream=True,
134
  max_tokens=3000,
135
  )
 
136
  response = st.write_stream(stream)
 
137
  except Exception as e:
138
+ response = "Error during generation."
139
+ random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
140
+ st.image(random_dog_pick)
141
+ st.write(e)
142
 
143
+ st.session_state.messages.append({"role": "assistant", "content": response})
144
 
 
145
  else:
146
+ # Data labeling workflow (for future implementation based on classification)
147
+ st.write("Data Labeling functionality will go here.")
148