Wedyan2023 commited on
Commit
255f60b
·
verified ·
1 Parent(s): 7603804

Create app4.py

Browse files
Files changed (1) hide show
  1. app4.py +173 -0
app4.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### اول كود للابيلنق اشتغل بس مافرق بين ريكوند و نت ريكومند
2
+ import numpy as np
3
+ import streamlit as st
4
+ from openai import OpenAI
5
+ import os
6
+ from dotenv import load_dotenv
7
+ import random
8
+
9
+ # Load environment variables
10
+ os.environ["BROWSER_GATHERUSAGESTATS"] = "false"
11
+ load_dotenv()
12
+
13
+ # Initialize the client
14
+ client = OpenAI(
15
+ base_url="https://api-inference.huggingface.co/v1",
16
+ api_key=os.environ.get('GP2') # Replace with your Huggingface token
17
+ )
18
+
19
+ # Initialize session state variables if they are not already defined
20
+ if "labels" not in st.session_state:
21
+ st.session_state.labels = []
22
+ if "few_shot_examples" not in st.session_state:
23
+ st.session_state.few_shot_examples = []
24
+ if "examples_to_classify" not in st.session_state:
25
+ st.session_state.examples_to_classify = []
26
+ if "messages" not in st.session_state:
27
+ st.session_state.messages = []
28
+
29
+ # Sidebar for model selection and temperature setting
30
+ selected_model = st.sidebar.selectbox("Select Model", ["Meta-Llama-3-8B"], key="model_select")
31
+ temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5, key="temp_slider")
32
+
33
+ # Reset conversation button
34
+ st.sidebar.button('Reset Chat', on_click=lambda: (st.session_state.update(conversation=[], messages=[])), key="reset_button")
35
+
36
+ # Main task selection: Data Generation or Data Labeling
37
+ task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"], key="task_choice_select")
38
+
39
+ # Data Generation Section
40
+ if task_choice == "Data Generation":
41
+ classification_type = st.selectbox(
42
+ "Choose Classification Type",
43
+ ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"],
44
+ key="classification_type_select"
45
+ )
46
+
47
+ # Define labels based on classification type
48
+ if classification_type == "Sentiment Analysis":
49
+ st.session_state.labels = ["Positive", "Negative", "Neutral"]
50
+ st.write("Sentiment Analysis: Positive, Negative, Neutral")
51
+ elif classification_type == "Binary Classification":
52
+ label_1 = st.text_input("Enter first class", key="binary_class_1")
53
+ label_2 = st.text_input("Enter second class", key="binary_class_2")
54
+ st.session_state.labels = [label_1, label_2]
55
+ elif classification_type == "Multi-Class Classification":
56
+ num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_slider")
57
+ st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_{i+1}") for i in range(num_classes)]
58
+
59
+ # Domain selection
60
+ domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"], key="domain_select")
61
+ if domain == "Custom":
62
+ domain = st.text_input("Specify custom domain", key="custom_domain_input")
63
+
64
+ # Word count selection
65
+ min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10, key="min_words_input")
66
+ max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90, key="max_words_input")
67
+
68
+ # Few-shot examples option
69
+ few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="few_shot_radio")
70
+ if few_shot == "Yes":
71
+ num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="num_examples_slider")
72
+ st.session_state.few_shot_examples = [
73
+ {
74
+ "content": st.text_area(f"Example {i+1} Text", key=f"example_text_{i+1}"),
75
+ "label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_{i+1}")
76
+ }
77
+ for i in range(num_examples)
78
+ ]
79
+ else:
80
+ st.session_state.few_shot_examples = []
81
+
82
+ # Number of examples to generate
83
+ num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10, key="num_to_generate_input")
84
+
85
+ # User prompt text field
86
+ user_prompt = st.text_area("Enter your prompt to guide example generation", "", key="user_prompt_text_area")
87
+
88
+ # System prompt generation
89
+ system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
90
+ if st.session_state.few_shot_examples:
91
+ system_prompt += "Use the following few-shot examples as a reference:\n"
92
+ for example in st.session_state.few_shot_examples:
93
+ system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
94
+ system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
95
+ system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
96
+ system_prompt += f"Use the labels specified: {', '.join(st.session_state.labels)}.\n"
97
+ if user_prompt:
98
+ system_prompt += f"Additional instructions: {user_prompt}\n"
99
+
100
+ st.write("System Prompt:")
101
+ st.code(system_prompt)
102
+
103
+ if st.button("Generate Examples", key="generate_examples_button"):
104
+ # Generate examples by concatenating all inputs and sending it to the model
105
+ with st.spinner("Generating..."):
106
+ st.session_state.messages.append({"role": "system", "content": system_prompt})
107
+
108
+ try:
109
+ stream = client.chat.completions.create(
110
+ model=selected_model,
111
+ messages=[
112
+ {"role": m["role"], "content": m["content"]}
113
+ for m in st.session_state.messages
114
+ ],
115
+ temperature=temp_values,
116
+ stream=True,
117
+ max_tokens=3000,
118
+ )
119
+ response = ""
120
+ for chunk in stream:
121
+ response += chunk['choices'][0]['delta'].get('content', '')
122
+ st.write(response)
123
+ except Exception as e:
124
+ st.error(f"Error during generation: {e}")
125
+
126
+ st.session_state.messages.append({"role": "assistant", "content": response})
127
+
128
+ # Data Labeling Section
129
+ else:
130
+ # Classification Type and Labels Setup
131
+ classification_type = st.selectbox("Choose Classification Type", ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"], key="classification_type_labeling")
132
+
133
+ if classification_type == "Sentiment Analysis":
134
+ st.session_state.labels = ["Positive", "Negative", "Neutral"]
135
+ st.write("Sentiment Analysis labels: Positive, Negative, Neutral")
136
+ elif classification_type == "Binary Classification":
137
+ label_1 = st.text_input("Enter first class", key="binary_class_1_labeling")
138
+ label_2 = st.text_input("Enter second class", key="binary_class_2_labeling")
139
+ st.session_state.labels = [label_1, label_2]
140
+ elif classification_type == "Multi-Class Classification":
141
+ num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_labeling")
142
+ st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_labeling_{i+1}") for i in range(num_classes)]
143
+
144
+ # Few-shot examples for labeling
145
+ use_few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="use_few_shot_labeling")
146
+ if use_few_shot == "Yes":
147
+ num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="few_shot_num_labeling")
148
+ st.session_state.few_shot_examples = [
149
+ {
150
+ "content": st.text_area(f"Example {i+1} Text", key=f"example_text_labeling_{i+1}"),
151
+ "label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_labeling_{i+1}")
152
+ }
153
+ for i in range(num_examples)
154
+ ]
155
+ else:
156
+ st.session_state.few_shot_examples = []
157
+
158
+ # Input Examples for Classification
159
+ num_to_classify = st.number_input("How many examples do you want to classify?", min_value=1, max_value=100, value=5, key="num_to_classify_input")
160
+ st.session_state.examples_to_classify = [st.text_area(f"Example {i+1} Text", key=f"example_classify_text_{i+1}") for i in range(num_to_classify)]
161
+
162
+ # Placeholder for classification function (can be replaced with actual API call)
163
+ def classify_examples(examples, labels):
164
+ classified_results = [{"example": ex, "label": random.choice(labels)} for ex in examples]
165
+ return classified_results
166
+
167
+ # Classification results display
168
+ if st.button("Classify Examples", key="classify_button"):
169
+ results = classify_examples(st.session_state.examples_to_classify, st.session_state.labels)
170
+ st.write("Classification Results:")
171
+ for result in results:
172
+ st.write(f"Example: {result['example']}\nLabel: {result['label']}\n")
173
+ شحح