Wedyan2023
commited on
Create app4.py
Browse files
app4.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### اول كود للابيلنق اشتغل بس مافرق بين ريكوند و نت ريكومند
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
from openai import OpenAI
|
5 |
+
import os
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import random
|
8 |
+
|
9 |
+
# Load environment variables
|
10 |
+
os.environ["BROWSER_GATHERUSAGESTATS"] = "false"
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
# Initialize the client
|
14 |
+
client = OpenAI(
|
15 |
+
base_url="https://api-inference.huggingface.co/v1",
|
16 |
+
api_key=os.environ.get('GP2') # Replace with your Huggingface token
|
17 |
+
)
|
18 |
+
|
19 |
+
# Initialize session state variables if they are not already defined
|
20 |
+
if "labels" not in st.session_state:
|
21 |
+
st.session_state.labels = []
|
22 |
+
if "few_shot_examples" not in st.session_state:
|
23 |
+
st.session_state.few_shot_examples = []
|
24 |
+
if "examples_to_classify" not in st.session_state:
|
25 |
+
st.session_state.examples_to_classify = []
|
26 |
+
if "messages" not in st.session_state:
|
27 |
+
st.session_state.messages = []
|
28 |
+
|
29 |
+
# Sidebar for model selection and temperature setting
|
30 |
+
selected_model = st.sidebar.selectbox("Select Model", ["Meta-Llama-3-8B"], key="model_select")
|
31 |
+
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5, key="temp_slider")
|
32 |
+
|
33 |
+
# Reset conversation button
|
34 |
+
st.sidebar.button('Reset Chat', on_click=lambda: (st.session_state.update(conversation=[], messages=[])), key="reset_button")
|
35 |
+
|
36 |
+
# Main task selection: Data Generation or Data Labeling
|
37 |
+
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"], key="task_choice_select")
|
38 |
+
|
39 |
+
# Data Generation Section
|
40 |
+
if task_choice == "Data Generation":
|
41 |
+
classification_type = st.selectbox(
|
42 |
+
"Choose Classification Type",
|
43 |
+
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"],
|
44 |
+
key="classification_type_select"
|
45 |
+
)
|
46 |
+
|
47 |
+
# Define labels based on classification type
|
48 |
+
if classification_type == "Sentiment Analysis":
|
49 |
+
st.session_state.labels = ["Positive", "Negative", "Neutral"]
|
50 |
+
st.write("Sentiment Analysis: Positive, Negative, Neutral")
|
51 |
+
elif classification_type == "Binary Classification":
|
52 |
+
label_1 = st.text_input("Enter first class", key="binary_class_1")
|
53 |
+
label_2 = st.text_input("Enter second class", key="binary_class_2")
|
54 |
+
st.session_state.labels = [label_1, label_2]
|
55 |
+
elif classification_type == "Multi-Class Classification":
|
56 |
+
num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_slider")
|
57 |
+
st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_{i+1}") for i in range(num_classes)]
|
58 |
+
|
59 |
+
# Domain selection
|
60 |
+
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"], key="domain_select")
|
61 |
+
if domain == "Custom":
|
62 |
+
domain = st.text_input("Specify custom domain", key="custom_domain_input")
|
63 |
+
|
64 |
+
# Word count selection
|
65 |
+
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10, key="min_words_input")
|
66 |
+
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90, key="max_words_input")
|
67 |
+
|
68 |
+
# Few-shot examples option
|
69 |
+
few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="few_shot_radio")
|
70 |
+
if few_shot == "Yes":
|
71 |
+
num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="num_examples_slider")
|
72 |
+
st.session_state.few_shot_examples = [
|
73 |
+
{
|
74 |
+
"content": st.text_area(f"Example {i+1} Text", key=f"example_text_{i+1}"),
|
75 |
+
"label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_{i+1}")
|
76 |
+
}
|
77 |
+
for i in range(num_examples)
|
78 |
+
]
|
79 |
+
else:
|
80 |
+
st.session_state.few_shot_examples = []
|
81 |
+
|
82 |
+
# Number of examples to generate
|
83 |
+
num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10, key="num_to_generate_input")
|
84 |
+
|
85 |
+
# User prompt text field
|
86 |
+
user_prompt = st.text_area("Enter your prompt to guide example generation", "", key="user_prompt_text_area")
|
87 |
+
|
88 |
+
# System prompt generation
|
89 |
+
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
|
90 |
+
if st.session_state.few_shot_examples:
|
91 |
+
system_prompt += "Use the following few-shot examples as a reference:\n"
|
92 |
+
for example in st.session_state.few_shot_examples:
|
93 |
+
system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
|
94 |
+
system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
|
95 |
+
system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
|
96 |
+
system_prompt += f"Use the labels specified: {', '.join(st.session_state.labels)}.\n"
|
97 |
+
if user_prompt:
|
98 |
+
system_prompt += f"Additional instructions: {user_prompt}\n"
|
99 |
+
|
100 |
+
st.write("System Prompt:")
|
101 |
+
st.code(system_prompt)
|
102 |
+
|
103 |
+
if st.button("Generate Examples", key="generate_examples_button"):
|
104 |
+
# Generate examples by concatenating all inputs and sending it to the model
|
105 |
+
with st.spinner("Generating..."):
|
106 |
+
st.session_state.messages.append({"role": "system", "content": system_prompt})
|
107 |
+
|
108 |
+
try:
|
109 |
+
stream = client.chat.completions.create(
|
110 |
+
model=selected_model,
|
111 |
+
messages=[
|
112 |
+
{"role": m["role"], "content": m["content"]}
|
113 |
+
for m in st.session_state.messages
|
114 |
+
],
|
115 |
+
temperature=temp_values,
|
116 |
+
stream=True,
|
117 |
+
max_tokens=3000,
|
118 |
+
)
|
119 |
+
response = ""
|
120 |
+
for chunk in stream:
|
121 |
+
response += chunk['choices'][0]['delta'].get('content', '')
|
122 |
+
st.write(response)
|
123 |
+
except Exception as e:
|
124 |
+
st.error(f"Error during generation: {e}")
|
125 |
+
|
126 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
127 |
+
|
128 |
+
# Data Labeling Section
|
129 |
+
else:
|
130 |
+
# Classification Type and Labels Setup
|
131 |
+
classification_type = st.selectbox("Choose Classification Type", ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"], key="classification_type_labeling")
|
132 |
+
|
133 |
+
if classification_type == "Sentiment Analysis":
|
134 |
+
st.session_state.labels = ["Positive", "Negative", "Neutral"]
|
135 |
+
st.write("Sentiment Analysis labels: Positive, Negative, Neutral")
|
136 |
+
elif classification_type == "Binary Classification":
|
137 |
+
label_1 = st.text_input("Enter first class", key="binary_class_1_labeling")
|
138 |
+
label_2 = st.text_input("Enter second class", key="binary_class_2_labeling")
|
139 |
+
st.session_state.labels = [label_1, label_2]
|
140 |
+
elif classification_type == "Multi-Class Classification":
|
141 |
+
num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_labeling")
|
142 |
+
st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_labeling_{i+1}") for i in range(num_classes)]
|
143 |
+
|
144 |
+
# Few-shot examples for labeling
|
145 |
+
use_few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="use_few_shot_labeling")
|
146 |
+
if use_few_shot == "Yes":
|
147 |
+
num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="few_shot_num_labeling")
|
148 |
+
st.session_state.few_shot_examples = [
|
149 |
+
{
|
150 |
+
"content": st.text_area(f"Example {i+1} Text", key=f"example_text_labeling_{i+1}"),
|
151 |
+
"label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_labeling_{i+1}")
|
152 |
+
}
|
153 |
+
for i in range(num_examples)
|
154 |
+
]
|
155 |
+
else:
|
156 |
+
st.session_state.few_shot_examples = []
|
157 |
+
|
158 |
+
# Input Examples for Classification
|
159 |
+
num_to_classify = st.number_input("How many examples do you want to classify?", min_value=1, max_value=100, value=5, key="num_to_classify_input")
|
160 |
+
st.session_state.examples_to_classify = [st.text_area(f"Example {i+1} Text", key=f"example_classify_text_{i+1}") for i in range(num_to_classify)]
|
161 |
+
|
162 |
+
# Placeholder for classification function (can be replaced with actual API call)
|
163 |
+
def classify_examples(examples, labels):
|
164 |
+
classified_results = [{"example": ex, "label": random.choice(labels)} for ex in examples]
|
165 |
+
return classified_results
|
166 |
+
|
167 |
+
# Classification results display
|
168 |
+
if st.button("Classify Examples", key="classify_button"):
|
169 |
+
results = classify_examples(st.session_state.examples_to_classify, st.session_state.labels)
|
170 |
+
st.write("Classification Results:")
|
171 |
+
for result in results:
|
172 |
+
st.write(f"Example: {result['example']}\nLabel: {result['label']}\n")
|
173 |
+
شحح
|