Create app9.py
Browse files
app9.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from datetime import datetime
|
5 |
+
import random
|
6 |
+
from pathlib import Path
|
7 |
+
from openai import OpenAI
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from langchain_core.prompts import PromptTemplate
|
10 |
+
|
11 |
+
# Initialize the client
|
12 |
+
# Load environment variables
|
13 |
+
load_dotenv()
|
14 |
+
client = OpenAI(
|
15 |
+
base_url="https://api-inference.huggingface.co/v1",
|
16 |
+
api_key=os.environ.get('GP_WED') # Add your Huggingface token here
|
17 |
+
)
|
18 |
+
|
19 |
+
# Load environment variables
|
20 |
+
##load_dotenv()
|
21 |
+
##openai_api_key = os.getenv("OPENAI_API_KEY")
|
22 |
+
|
23 |
+
# Initialize OpenAI client
|
24 |
+
##client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
|
25 |
+
|
26 |
+
# Custom CSS for better appearance
|
27 |
+
st.markdown("""
|
28 |
+
<style>
|
29 |
+
.stButton > button {
|
30 |
+
width: 100%;
|
31 |
+
margin-bottom: 10px;
|
32 |
+
background-color: #4CAF50;
|
33 |
+
color: white;
|
34 |
+
border: none;
|
35 |
+
padding: 10px;
|
36 |
+
border-radius: 5px;
|
37 |
+
}
|
38 |
+
.task-button {
|
39 |
+
background-color: #2196F3 !important;
|
40 |
+
}
|
41 |
+
.stSelectbox {
|
42 |
+
margin-bottom: 20px;
|
43 |
+
}
|
44 |
+
.output-container {
|
45 |
+
padding: 20px;
|
46 |
+
border-radius: 5px;
|
47 |
+
border: 1px solid #ddd;
|
48 |
+
margin: 10px 0;
|
49 |
+
}
|
50 |
+
.status-container {
|
51 |
+
padding: 10px;
|
52 |
+
border-radius: 5px;
|
53 |
+
margin: 10px 0;
|
54 |
+
}
|
55 |
+
.sidebar-info {
|
56 |
+
padding: 10px;
|
57 |
+
background-color: #f0f2f6;
|
58 |
+
border-radius: 5px;
|
59 |
+
margin: 10px 0;
|
60 |
+
}
|
61 |
+
</style>
|
62 |
+
""", unsafe_allow_html=True)
|
63 |
+
|
64 |
+
# Create data directories if they don't exist
|
65 |
+
if not os.path.exists('data'):
|
66 |
+
os.makedirs('data')
|
67 |
+
|
68 |
+
def read_csv_with_encoding(file):
|
69 |
+
encodings = ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']
|
70 |
+
for encoding in encodings:
|
71 |
+
try:
|
72 |
+
return pd.read_csv(file, encoding=encoding)
|
73 |
+
except UnicodeDecodeError:
|
74 |
+
continue
|
75 |
+
raise UnicodeDecodeError("Failed to read file with any supported encoding")
|
76 |
+
|
77 |
+
def save_to_csv(data, filename):
|
78 |
+
df = pd.DataFrame(data)
|
79 |
+
df.to_csv(f'data/{filename}', index=False)
|
80 |
+
return df
|
81 |
+
|
82 |
+
def load_from_csv(filename):
|
83 |
+
try:
|
84 |
+
return pd.read_csv(f'data/{filename}')
|
85 |
+
except:
|
86 |
+
return pd.DataFrame()
|
87 |
+
|
88 |
+
# Define reset function
|
89 |
+
def reset_conversation():
|
90 |
+
st.session_state.conversation = []
|
91 |
+
st.session_state.messages = []
|
92 |
+
|
93 |
+
# Initialize session state
|
94 |
+
if "messages" not in st.session_state:
|
95 |
+
st.session_state.messages = []
|
96 |
+
|
97 |
+
# Main app title
|
98 |
+
st.title("🤖 LangChain-Based Data Interaction App")
|
99 |
+
|
100 |
+
# Sidebar settings
|
101 |
+
with st.sidebar:
|
102 |
+
st.title("⚙️ Settings")
|
103 |
+
|
104 |
+
selected_model = st.selectbox(
|
105 |
+
"Select Model",
|
106 |
+
["meta-llama/Meta-Llama-3-8B-Instruct"],
|
107 |
+
key='model_select'
|
108 |
+
)
|
109 |
+
|
110 |
+
temperature = st.slider(
|
111 |
+
"Temperature",
|
112 |
+
0.0, 1.0, 0.5,
|
113 |
+
help="Controls randomness in generation"
|
114 |
+
)
|
115 |
+
|
116 |
+
st.button("🔄 Reset Conversation", on_click=reset_conversation)
|
117 |
+
|
118 |
+
with st.container():
|
119 |
+
st.markdown("""
|
120 |
+
<div class="sidebar-info">
|
121 |
+
<h4>Current Model: {}</h4>
|
122 |
+
<p><em>Note: Generated content may be inaccurate or false.</em></p>
|
123 |
+
</div>
|
124 |
+
""".format(selected_model), unsafe_allow_html=True)
|
125 |
+
|
126 |
+
# Main content
|
127 |
+
col1, col2 = st.columns(2)
|
128 |
+
|
129 |
+
with col1:
|
130 |
+
if st.button("📝 Data Generation", key="gen_button", help="Generate new data"):
|
131 |
+
st.session_state.task_choice = "Data Generation"
|
132 |
+
|
133 |
+
with col2:
|
134 |
+
if st.button("🏷️ Data Labeling", key="label_button", help="Label existing data"):
|
135 |
+
st.session_state.task_choice = "Data Labeling"
|
136 |
+
|
137 |
+
if "task_choice" in st.session_state:
|
138 |
+
if st.session_state.task_choice == "Data Generation":
|
139 |
+
st.header("📝 Data Generation")
|
140 |
+
|
141 |
+
classification_type = st.selectbox(
|
142 |
+
"Classification Type",
|
143 |
+
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
|
144 |
+
)
|
145 |
+
|
146 |
+
if classification_type == "Sentiment Analysis":
|
147 |
+
labels = ["Positive", "Negative", "Neutral"]
|
148 |
+
elif classification_type == "Binary Classification":
|
149 |
+
col1, col2 = st.columns(2)
|
150 |
+
with col1:
|
151 |
+
label_1 = st.text_input("First class", "Positive")
|
152 |
+
with col2:
|
153 |
+
label_2 = st.text_input("Second class", "Negative")
|
154 |
+
labels = [label_1, label_2] if label_1 and label_2 else ["Positive", "Negative"]
|
155 |
+
else:
|
156 |
+
num_classes = st.slider("Number of classes", 3, 10, 3)
|
157 |
+
labels = []
|
158 |
+
cols = st.columns(3)
|
159 |
+
for i in range(num_classes):
|
160 |
+
with cols[i % 3]:
|
161 |
+
label = st.text_input(f"Class {i+1}", f"Class_{i+1}")
|
162 |
+
labels.append(label)
|
163 |
+
|
164 |
+
domain = st.selectbox("Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
|
165 |
+
if domain == "Custom":
|
166 |
+
domain = st.text_input("Specify custom domain")
|
167 |
+
|
168 |
+
col1, col2 = st.columns(2)
|
169 |
+
with col1:
|
170 |
+
min_words = st.number_input("Min words", 10, 90, 20)
|
171 |
+
with col2:
|
172 |
+
max_words = st.number_input("Max words", min_words, 90, 50)
|
173 |
+
|
174 |
+
use_few_shot = st.toggle("Use few-shot examples")
|
175 |
+
few_shot_examples = []
|
176 |
+
if use_few_shot:
|
177 |
+
num_examples = st.slider("Number of few-shot examples", 1, 5, 1)
|
178 |
+
for i in range(num_examples):
|
179 |
+
with st.expander(f"Example {i+1}"):
|
180 |
+
content = st.text_area(f"Content", key=f"few_shot_content_{i}")
|
181 |
+
label = st.selectbox(f"Label", labels, key=f"few_shot_label_{i}")
|
182 |
+
if content and label:
|
183 |
+
few_shot_examples.append({"content": content, "label": label})
|
184 |
+
|
185 |
+
num_to_generate = st.number_input("Number of examples", 1, 100, 10)
|
186 |
+
user_prompt = st.text_area("Additional instructions (optional)")
|
187 |
+
|
188 |
+
# Updated prompt template with word length constraints
|
189 |
+
prompt_template = PromptTemplate(
|
190 |
+
input_variables=["classification_type", "domain", "num_examples", "min_words", "max_words", "labels", "user_prompt"],
|
191 |
+
template=(
|
192 |
+
"You are a professional {classification_type} expert tasked with generating examples for {domain}.\n"
|
193 |
+
"Use the following parameters:\n"
|
194 |
+
"- Generate exactly {num_examples} examples\n"
|
195 |
+
"- Each example MUST be between {min_words} and {max_words} words long\n"
|
196 |
+
"- Use these labels: {labels}\n"
|
197 |
+
"- Generate the examples in this format: 'Example text. Label: [label]'\n"
|
198 |
+
"- Do not include word counts or any additional information\n"
|
199 |
+
"Additional instructions: {user_prompt}\n\n"
|
200 |
+
"Generate numbered examples:"
|
201 |
+
)
|
202 |
+
)
|
203 |
+
|
204 |
+
col1, col2 = st.columns(2)
|
205 |
+
with col1:
|
206 |
+
if st.button("🎯 Generate Examples"):
|
207 |
+
with st.spinner("Generating examples..."):
|
208 |
+
system_prompt = prompt_template.format(
|
209 |
+
classification_type=classification_type,
|
210 |
+
domain=domain,
|
211 |
+
num_examples=num_to_generate,
|
212 |
+
min_words=min_words,
|
213 |
+
max_words=max_words,
|
214 |
+
labels=", ".join(labels),
|
215 |
+
user_prompt=user_prompt
|
216 |
+
)
|
217 |
+
try:
|
218 |
+
stream = client.chat.completions.create(
|
219 |
+
model=selected_model,
|
220 |
+
messages=[{"role": "system", "content": system_prompt}],
|
221 |
+
temperature=temperature,
|
222 |
+
stream=True,
|
223 |
+
max_tokens=3000,
|
224 |
+
)
|
225 |
+
response = st.write_stream(stream)
|
226 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
227 |
+
except Exception as e:
|
228 |
+
st.error("An error occurred during generation.")
|
229 |
+
st.error(f"Details: {e}")
|
230 |
+
|
231 |
+
with col2:
|
232 |
+
if st.button("🔄 Regenerate"):
|
233 |
+
st.session_state.messages = st.session_state.messages[:-1] if st.session_state.messages else []
|
234 |
+
with st.spinner("Regenerating examples..."):
|
235 |
+
system_prompt = prompt_template.format(
|
236 |
+
classification_type=classification_type,
|
237 |
+
domain=domain,
|
238 |
+
num_examples=num_to_generate,
|
239 |
+
min_words=min_words,
|
240 |
+
max_words=max_words,
|
241 |
+
labels=", ".join(labels),
|
242 |
+
user_prompt=user_prompt
|
243 |
+
)
|
244 |
+
try:
|
245 |
+
stream = client.chat.completions.create(
|
246 |
+
model=selected_model,
|
247 |
+
messages=[{"role": "system", "content": system_prompt}],
|
248 |
+
temperature=temperature,
|
249 |
+
stream=True,
|
250 |
+
max_tokens=3000,
|
251 |
+
)
|
252 |
+
response = st.write_stream(stream)
|
253 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
254 |
+
except Exception as e:
|
255 |
+
st.error("An error occurred during regeneration.")
|
256 |
+
st.error(f"Details: {e}")
|
257 |
+
|
258 |
+
elif st.session_state.task_choice == "Data Labeling":
|
259 |
+
st.header("🏷️ Data Labeling")
|
260 |
+
|
261 |
+
classification_type = st.selectbox(
|
262 |
+
"Classification Type",
|
263 |
+
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"],
|
264 |
+
key="label_class_type"
|
265 |
+
)
|
266 |
+
|
267 |
+
if classification_type == "Sentiment Analysis":
|
268 |
+
labels = ["Positive", "Negative", "Neutral"]
|
269 |
+
elif classification_type == "Binary Classification":
|
270 |
+
col1, col2 = st.columns(2)
|
271 |
+
with col1:
|
272 |
+
label_1 = st.text_input("First class", "Positive", key="label_first")
|
273 |
+
with col2:
|
274 |
+
label_2 = st.text_input("Second class", "Negative", key="label_second")
|
275 |
+
labels = [label_1, label_2] if label_1 and label_2 else ["Positive", "Negative"]
|
276 |
+
else:
|
277 |
+
num_classes = st.slider("Number of classes", 3, 10, 3, key="label_num_classes")
|
278 |
+
labels = []
|
279 |
+
cols = st.columns(3)
|
280 |
+
for i in range(num_classes):
|
281 |
+
with cols[i % 3]:
|
282 |
+
label = st.text_input(f"Class {i+1}", f"Class_{i+1}", key=f"label_class_{i}")
|
283 |
+
labels.append(label)
|
284 |
+
|
285 |
+
use_few_shot = st.toggle("Use few-shot examples for labeling")
|
286 |
+
few_shot_examples = []
|
287 |
+
if use_few_shot:
|
288 |
+
num_few_shot = st.slider("Number of few-shot examples", 1, 5, 1)
|
289 |
+
for i in range(num_few_shot):
|
290 |
+
with st.expander(f"Few-shot Example {i+1}"):
|
291 |
+
content = st.text_area(f"Content", key=f"label_few_shot_content_{i}")
|
292 |
+
label = st.selectbox(f"Label", labels, key=f"label_few_shot_label_{i}")
|
293 |
+
if content and label:
|
294 |
+
few_shot_examples.append(f"{content}\nLabel: {label}")
|
295 |
+
|
296 |
+
num_examples = st.number_input("Number of examples to classify", 1, 100, 1)
|
297 |
+
|
298 |
+
examples_to_classify = []
|
299 |
+
if num_examples <= 20:
|
300 |
+
for i in range(num_examples):
|
301 |
+
example = st.text_area(f"Example {i+1}", key=f"example_{i}")
|
302 |
+
if example:
|
303 |
+
examples_to_classify.append(example)
|
304 |
+
else:
|
305 |
+
examples_text = st.text_area(
|
306 |
+
"Enter examples (one per line)",
|
307 |
+
height=300,
|
308 |
+
help="Enter each example on a new line"
|
309 |
+
)
|
310 |
+
if examples_text:
|
311 |
+
examples_to_classify = [ex.strip() for ex in examples_text.split('\n') if ex.strip()]
|
312 |
+
if len(examples_to_classify) > num_examples:
|
313 |
+
examples_to_classify = examples_to_classify[:num_examples]
|
314 |
+
|
315 |
+
user_prompt = st.text_area("Additional instructions (optional)", key="label_instructions")
|
316 |
+
|
317 |
+
# Updated prompt template for labeling
|
318 |
+
few_shot_text = "\n\n".join(few_shot_examples) if few_shot_examples else ""
|
319 |
+
examples_text = "\n".join([f"{i+1}. {ex}" for i, ex in enumerate(examples_to_classify)])
|
320 |
+
|
321 |
+
label_prompt_template = PromptTemplate(
|
322 |
+
input_variables=["classification_type", "labels", "few_shot_examples", "examples", "user_prompt"],
|
323 |
+
template=(
|
324 |
+
"You are a professional {classification_type} expert. Classify the following examples using these labels: {labels}.\n"
|
325 |
+
"Instructions:\n"
|
326 |
+
"- Return the numbered example followed by its classification in the format: 'Example text. Label: [label]'\n"
|
327 |
+
"- Do not provide any additional information or explanations\n"
|
328 |
+
"{user_prompt}\n\n"
|
329 |
+
"Few-shot examples:\n{few_shot_examples}\n\n"
|
330 |
+
"Examples to classify:\n{examples}\n\n"
|
331 |
+
"Output:\n"
|
332 |
+
)
|
333 |
+
)
|
334 |
+
|
335 |
+
col1, col2 = st.columns(2)
|
336 |
+
with col1:
|
337 |
+
if st.button("🏷️ Label Data"):
|
338 |
+
if examples_to_classify:
|
339 |
+
with st.spinner("Labeling data..."):
|
340 |
+
system_prompt = label_prompt_template.format(
|
341 |
+
classification_type=classification_type,
|
342 |
+
labels=", ".join(labels),
|
343 |
+
few_shot_examples=few_shot_text,
|
344 |
+
examples=examples_text,
|
345 |
+
user_prompt=user_prompt
|
346 |
+
)
|
347 |
+
try:
|
348 |
+
stream = client.chat.completions.create(
|
349 |
+
model=selected_model,
|
350 |
+
messages=[{"role": "system", "content": system_prompt}],
|
351 |
+
temperature=temperature,
|
352 |
+
stream=True,
|
353 |
+
max_tokens=3000,
|
354 |
+
)
|
355 |
+
response = st.write_stream(stream)
|
356 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
357 |
+
except Exception as e:
|
358 |
+
st.error("An error occurred during labeling.")
|
359 |
+
st.error(f"Details: {e}")
|
360 |
+
else:
|
361 |
+
st.warning("Please enter at least one example to classify.")
|
362 |
+
|
363 |
+
with col2:
|
364 |
+
if st.button("🔄 Relabel"):
|
365 |
+
if examples_to_classify:
|
366 |
+
st.session_state.messages = st.session_state.messages[:-1] if st.session_state.messages else []
|
367 |
+
with st.spinner("Relabeling data..."):
|
368 |
+
system_prompt = label_prompt_template.format(
|
369 |
+
classification_type=classification_type,
|
370 |
+
labels=", ".join(labels),
|
371 |
+
few_shot_examples=few_shot_text,
|
372 |
+
examples=examples_text,
|
373 |
+
user_prompt=user_prompt
|
374 |
+
)
|
375 |
+
try:
|
376 |
+
stream = client.chat.completions.create(
|
377 |
+
model=selected_model,
|
378 |
+
messages=[{"role": "system", "content": system_prompt}],
|
379 |
+
temperature=temperature,
|
380 |
+
stream=True,
|
381 |
+
max_tokens=3000,
|
382 |
+
)
|
383 |
+
response = st.write_stream(stream)
|
384 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
385 |
+
except Exception as e:
|
386 |
+
st.error("An error occurred during relabeling.")
|
387 |
+
st.error(f"Details: {e}")
|
388 |
+
else:
|
389 |
+
st.warning("Please enter at least one example to classify.")
|