Wedyan2023 commited on
Commit
9f57726
·
verified ·
1 Parent(s): b94caa3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +98 -87
app.py CHANGED
@@ -7,131 +7,142 @@ import numpy as np
7
  import streamlit as st
8
  from openai import OpenAI
9
  import os
 
10
  from dotenv import load_dotenv
11
- #streamlit
12
 
13
  load_dotenv()
14
 
15
  # Initialize the client
16
  client = OpenAI(
17
  base_url="https://api-inference.huggingface.co/v1",
18
- api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token
19
  )
20
 
21
- # Function to reset conversation
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  def reset_conversation():
23
  st.session_state.conversation = []
24
  st.session_state.messages = []
25
  return None
26
 
27
- # Initialize session state for 'messages' if it doesn't exist
28
- if 'messages' not in st.session_state:
29
- st.session_state.messages = []
30
 
31
- # Define classification options
32
- classification_types = ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
33
 
34
- # Start with a selection between data generation or labeling
35
- st.sidebar.write("Choose Task:")
36
- task = st.sidebar.radio("Do you want to generate data or label data?", ("Data Generation", "Data Labeling"))
37
 
38
- # If the user selects Data Labeling
39
- if task == "Data Labeling":
40
- st.sidebar.write("Choose Classification Type:")
41
- classification_type = st.sidebar.radio("Select a classification type:", classification_types)
42
-
43
- # Handle Sentiment Analysis
44
- if classification_type == "Sentiment Analysis":
45
- st.sidebar.write("Classes: Positive, Negative, Neutral (fixed)")
46
- class_labels = ["Positive", "Negative", "Neutral"]
47
 
48
- # Handle Binary Classification
49
- elif classification_type == "Binary Classification":
50
- class_1 = st.sidebar.text_input("Enter Class 1:")
51
- class_2 = st.sidebar.text_input("Enter Class 2:")
52
- class_labels = [class_1, class_2]
53
 
54
- # Handle Multi-Class Classification
55
- elif classification_type == "Multi-Class Classification":
56
- class_labels = []
57
- for i in range(1, 11): # Allow up to 10 classes
58
- label = st.sidebar.text_input(f"Enter Class {i} (leave blank to stop):")
59
- if label:
60
- class_labels.append(label)
61
- else:
62
- break
63
-
64
- # Domain selection
65
- st.sidebar.write("Specify the Domain:")
66
- domain = st.sidebar.radio("Choose a domain:", ("Restaurant Reviews", "E-commerce Reviews", "Custom"))
67
- if domain == "Custom":
68
- domain = st.sidebar.text_input("Enter Custom Domain:")
69
-
70
- # Specify example length
71
- st.sidebar.write("Specify the Length of Examples:")
72
- min_words = st.sidebar.number_input("Minimum word count (10 to 90):", 10, 90, 10)
73
- max_words = st.sidebar.number_input("Maximum word count (10 to 90):", min_words, 90, 50)
74
-
75
- # Few-shot examples option
76
- use_few_shot = st.sidebar.radio("Do you want to use few-shot examples?", ("Yes", "No"))
77
- few_shot_examples = []
78
- if use_few_shot == "Yes":
79
- num_examples = st.sidebar.number_input("How many few-shot examples? (1 to 5)", 1, 5, 1)
80
- for i in range(num_examples):
81
- example_text = st.text_area(f"Enter example {i+1}:")
82
- example_label = st.selectbox(f"Select the label for example {i+1}:", class_labels)
83
- few_shot_examples.append({"text": example_text, "label": example_label})
84
-
85
- # Generate the system prompt based on classification type
86
- if classification_type == "Sentiment Analysis":
87
- system_prompt = f"You are a propositional sentiment analysis expert. Your role is to generate sentiment analysis reviews based on the data entered and few-shot examples provided, if any, for the domain '{domain}'."
88
- elif classification_type == "Binary Classification":
89
- system_prompt = f"You are an expert in binary classification. Your task is to label examples for the domain '{domain}' with either '{class_1}' or '{class_2}', based on the data provided."
90
- else: # Multi-Class Classification
91
- system_prompt = f"You are an expert in multi-class classification. Your role is to label examples for the domain '{domain}' using the provided class labels."
92
 
93
- st.sidebar.write("System Prompt:")
94
- st.sidebar.write(system_prompt)
 
 
95
 
96
- # Step-by-step thinking
97
- st.sidebar.write("Generated Data:")
98
- st.sidebar.write("Think step by step to ensure accuracy in classification.")
99
 
100
- # Accept user input for generating or labeling data
101
- if prompt := st.chat_input(f"Hi, I'm ready to help with {classification_type} for {domain}. Ask me a question or provide data to classify."):
 
 
 
102
 
103
- # Display user message in chat message container
104
- with st.chat_message("user"):
105
- st.markdown(prompt)
106
- # Add user message to chat history
107
- st.session_state.messages.append({"role": "user", "content": prompt})
 
 
 
 
 
108
 
109
- # Display assistant response in chat message container
110
- with st.chat_message("assistant"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
  try:
113
- # Stream the response from the model
114
  stream = client.chat.completions.create(
115
- model="meta-llama/Meta-Llama-3-8B-Instruct",
116
  messages=[
117
  {"role": m["role"], "content": m["content"]}
118
  for m in st.session_state.messages
119
  ],
120
- temperature=0.5,
121
  stream=True,
122
  max_tokens=3000,
123
  )
124
-
125
  response = st.write_stream(stream)
126
-
127
  except Exception as e:
128
- response = "😵‍💫 Something went wrong. Try again later."
129
- st.write(response)
 
 
130
 
131
- st.session_state.messages.append({"role": "assistant", "content": response})
132
 
133
- # If the user selects Data Generation
134
  else:
135
- st.sidebar.write("This feature will allow you to generate new data. Coming soon!")
 
 
 
136
 
137
 
 
7
  import streamlit as st
8
  from openai import OpenAI
9
  import os
10
+ import sys
11
  from dotenv import load_dotenv
 
12
 
13
  load_dotenv()
14
 
15
  # Initialize the client
16
  client = OpenAI(
17
  base_url="https://api-inference.huggingface.co/v1",
18
+ api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Add your Huggingface token here
19
  )
20
 
21
+ # Supported models
22
+ model_links = {
23
+ "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
24
+ }
25
+
26
+ # Random dog images for error messages
27
+ random_dog = [
28
+ "0f476473-2d8b-415e-b944-483768418a95.jpg",
29
+ "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
30
+ "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
31
+ "1326984c-39b0-492c-a773-f120d747a7e2.jpg"
32
+ ]
33
+
34
+ # Reset conversation
35
  def reset_conversation():
36
  st.session_state.conversation = []
37
  st.session_state.messages = []
38
  return None
39
 
40
+ # Define the available models
41
+ models = [key for key in model_links.keys()]
 
42
 
43
+ # Sidebar for model selection
44
+ selected_model = st.sidebar.selectbox("Select Model", models)
45
 
46
+ # Temperature slider
47
+ temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
 
48
 
49
+ # Reset button
50
+ st.sidebar.button('Reset Chat', on_click=reset_conversation)
 
 
 
 
 
 
 
51
 
52
+ # Model description
53
+ st.sidebar.write(f"You're now chatting with **{selected_model}**")
54
+ st.sidebar.markdown("*Generated content may be inaccurate or false.*")
 
 
55
 
56
+ # Chat initialization
57
+ if "messages" not in st.session_state:
58
+ st.session_state.messages = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
+ # Display chat messages
61
+ for message in st.session_state.messages:
62
+ with st.chat_message(message["role"]):
63
+ st.markdown(message["content"])
64
 
65
+ # Main logic to choose between data generation and data labeling
66
+ task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
 
67
 
68
+ if task_choice == "Data Generation":
69
+ classification_type = st.selectbox(
70
+ "Choose Classification Type",
71
+ ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
72
+ )
73
 
74
+ if classification_type == "Sentiment Analysis":
75
+ st.write("Sentiment Analysis: Positive, Negative, Neutral")
76
+ labels = ["Positive", "Negative", "Neutral"]
77
+ elif classification_type == "Binary Classification":
78
+ label_1 = st.text_input("Enter first class")
79
+ label_2 = st.text_input("Enter second class")
80
+ labels = [label_1, label_2]
81
+ elif classification_type == "Multi-Class Classification":
82
+ num_classes = st.slider("How many classes?", 3, 10, 3)
83
+ labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
84
 
85
+ domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
86
+ if domain == "Custom":
87
+ domain = st.text_input("Specify custom domain")
88
+
89
+ min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
90
+ max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
91
+
92
+ few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
93
+ if few_shot == "Yes":
94
+ num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
95
+ few_shot_examples = [
96
+ {"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
97
+ for i in range(num_examples)
98
+ ]
99
+ else:
100
+ few_shot_examples = []
101
+
102
+ # Ask the user how many examples they need
103
+ num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=50, value=10)
104
+
105
+ # System prompt generation
106
+ system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
107
+ if few_shot_examples:
108
+ system_prompt += "Use the following few-shot examples as a reference:\n"
109
+ for example in few_shot_examples:
110
+ system_prompt += f"Example: {example['content']}, Label: {example['label']}\n"
111
+ system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
112
+ system_prompt += "Think step by step while generating the examples."
113
+
114
+ st.write("System Prompt:")
115
+ st.code(system_prompt)
116
+
117
+ if st.button("Generate Examples"):
118
+ # Generate examples by concatenating all inputs and sending it to the model
119
+ with st.spinner("Generating..."):
120
+ st.session_state.messages.append({"role": "system", "content": system_prompt})
121
 
122
  try:
 
123
  stream = client.chat.completions.create(
124
+ model=model_links[selected_model],
125
  messages=[
126
  {"role": m["role"], "content": m["content"]}
127
  for m in st.session_state.messages
128
  ],
129
+ temperature=temp_values,
130
  stream=True,
131
  max_tokens=3000,
132
  )
 
133
  response = st.write_stream(stream)
 
134
  except Exception as e:
135
+ response = "Error during generation."
136
+ random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
137
+ st.image(random_dog_pick)
138
+ st.write(e)
139
 
140
+ st.session_state.messages.append({"role": "assistant", "content": response})
141
 
 
142
  else:
143
+ # Data labeling workflow (for future implementation based on classification)
144
+ st.write("Data Labeling functionality will go here.")
145
+
146
+
147
 
148