Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,80 +17,115 @@ client = OpenAI(
|
|
17 |
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token
|
18 |
)
|
19 |
|
20 |
-
#
|
21 |
-
model_link = "meta-llama/Meta-Llama-3-8B-Instruct"
|
22 |
-
model_info = {
|
23 |
-
'description': """The Llama (3) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n
|
24 |
-
It was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.** \n""",
|
25 |
-
'logo': 'Llama_logo.png'
|
26 |
-
}
|
27 |
-
|
28 |
-
# Random dog images for error message
|
29 |
-
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
|
30 |
-
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
|
31 |
-
"526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
|
32 |
-
"1326984c-39b0-492c-a773-f120d747a7e2.jpg"]
|
33 |
-
|
34 |
def reset_conversation():
|
35 |
-
'''Resets Conversation'''
|
36 |
st.session_state.conversation = []
|
37 |
st.session_state.messages = []
|
38 |
return None
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
#
|
44 |
-
st.sidebar.
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
st.sidebar.
|
50 |
-
st.sidebar.
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
# Display chat messages from history on app rerun
|
58 |
-
for message in st.session_state.messages:
|
59 |
-
with st.chat_message(message["role"]):
|
60 |
-
st.markdown(message["content"])
|
61 |
-
|
62 |
-
# Accept user input
|
63 |
-
if prompt := st.chat_input(f"Hi, I'm Llama 3, ask me a question"):
|
64 |
-
|
65 |
-
# Display user message in chat message container
|
66 |
-
with st.chat_message("user"):
|
67 |
-
st.markdown(prompt)
|
68 |
-
# Add user message to chat history
|
69 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
70 |
-
|
71 |
-
# Display assistant response in chat message container
|
72 |
-
with st.chat_message("assistant"):
|
73 |
-
|
74 |
-
try:
|
75 |
-
stream = client.chat.completions.create(
|
76 |
-
model=model_link,
|
77 |
-
messages=[
|
78 |
-
{"role": m["role"], "content": m["content"]}
|
79 |
-
for m in st.session_state.messages
|
80 |
-
],
|
81 |
-
temperature=temp_values,
|
82 |
-
stream=True,
|
83 |
-
max_tokens=3000,
|
84 |
-
)
|
85 |
-
|
86 |
-
response = st.write_stream(stream)
|
87 |
-
|
88 |
-
except Exception as e:
|
89 |
-
response = "😵💫 Looks like something went wrong! Try again later.\nHere's a random pic of a 🐶:"
|
90 |
-
st.write(response)
|
91 |
-
random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
|
92 |
-
st.image(random_dog_pick)
|
93 |
-
st.write("This was the error message:")
|
94 |
-
st.write(e)
|
95 |
-
|
96 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
17 |
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token
|
18 |
)
|
19 |
|
20 |
+
# Function to reset conversation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def reset_conversation():
|
|
|
22 |
st.session_state.conversation = []
|
23 |
st.session_state.messages = []
|
24 |
return None
|
25 |
|
26 |
+
# Define classification options
|
27 |
+
classification_types = ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
|
28 |
+
|
29 |
+
# Start with a selection between data generation or labeling
|
30 |
+
st.sidebar.write("Choose Task:")
|
31 |
+
task = st.sidebar.radio("Do you want to generate data or label data?", ("Data Generation", "Data Labeling"))
|
32 |
+
|
33 |
+
# If the user selects Data Labeling
|
34 |
+
if task == "Data Labeling":
|
35 |
+
st.sidebar.write("Choose Classification Type:")
|
36 |
+
classification_type = st.sidebar.radio("Select a classification type:", classification_types)
|
37 |
+
|
38 |
+
# Handle Sentiment Analysis
|
39 |
+
if classification_type == "Sentiment Analysis":
|
40 |
+
st.sidebar.write("Classes: Positive, Negative, Neutral (fixed)")
|
41 |
+
class_labels = ["Positive", "Negative", "Neutral"]
|
42 |
+
|
43 |
+
# Handle Binary Classification
|
44 |
+
elif classification_type == "Binary Classification":
|
45 |
+
class_1 = st.sidebar.text_input("Enter Class 1:")
|
46 |
+
class_2 = st.sidebar.text_input("Enter Class 2:")
|
47 |
+
class_labels = [class_1, class_2]
|
48 |
+
|
49 |
+
# Handle Multi-Class Classification
|
50 |
+
elif classification_type == "Multi-Class Classification":
|
51 |
+
class_labels = []
|
52 |
+
for i in range(1, 11): # Allow up to 10 classes
|
53 |
+
label = st.sidebar.text_input(f"Enter Class {i} (leave blank to stop):")
|
54 |
+
if label:
|
55 |
+
class_labels.append(label)
|
56 |
+
else:
|
57 |
+
break
|
58 |
+
|
59 |
+
# Domain selection
|
60 |
+
st.sidebar.write("Specify the Domain:")
|
61 |
+
domain = st.sidebar.radio("Choose a domain:", ("Restaurant Reviews", "E-commerce Reviews", "Custom"))
|
62 |
+
if domain == "Custom":
|
63 |
+
domain = st.sidebar.text_input("Enter Custom Domain:")
|
64 |
+
|
65 |
+
# Specify example length
|
66 |
+
st.sidebar.write("Specify the Length of Examples:")
|
67 |
+
min_words = st.sidebar.number_input("Minimum word count (10 to 90):", 10, 90, 10)
|
68 |
+
max_words = st.sidebar.number_input("Maximum word count (10 to 90):", min_words, 90, 50)
|
69 |
+
|
70 |
+
# Few-shot examples option
|
71 |
+
use_few_shot = st.sidebar.radio("Do you want to use few-shot examples?", ("Yes", "No"))
|
72 |
+
few_shot_examples = []
|
73 |
+
if use_few_shot == "Yes":
|
74 |
+
num_examples = st.sidebar.number_input("How many few-shot examples? (1 to 5)", 1, 5, 1)
|
75 |
+
for i in range(num_examples):
|
76 |
+
example_text = st.text_area(f"Enter example {i+1}:")
|
77 |
+
example_label = st.selectbox(f"Select the label for example {i+1}:", class_labels)
|
78 |
+
few_shot_examples.append({"text": example_text, "label": example_label})
|
79 |
+
|
80 |
+
# Generate the system prompt based on classification type
|
81 |
+
if classification_type == "Sentiment Analysis":
|
82 |
+
system_prompt = f"You are a propositional sentiment analysis expert. Your role is to generate sentiment analysis reviews based on the data entered and few-shot examples provided, if any, for the domain '{domain}'."
|
83 |
+
elif classification_type == "Binary Classification":
|
84 |
+
system_prompt = f"You are an expert in binary classification. Your task is to label examples for the domain '{domain}' with either '{class_1}' or '{class_2}', based on the data provided."
|
85 |
+
else: # Multi-Class Classification
|
86 |
+
system_prompt = f"You are an expert in multi-class classification. Your role is to label examples for the domain '{domain}' using the provided class labels."
|
87 |
+
|
88 |
+
st.sidebar.write("System Prompt:")
|
89 |
+
st.sidebar.write(system_prompt)
|
90 |
+
|
91 |
+
# Step-by-step thinking
|
92 |
+
st.sidebar.write("Generated Data:")
|
93 |
+
st.sidebar.write("Think step by step to ensure accuracy in classification.")
|
94 |
+
|
95 |
+
# Accept user input for generating or labeling data
|
96 |
+
if prompt := st.chat_input(f"Hi, I'm ready to help with {classification_type} for {domain}. Ask me a question or provide data to classify."):
|
97 |
+
|
98 |
+
# Display user message in chat message container
|
99 |
+
with st.chat_message("user"):
|
100 |
+
st.markdown(prompt)
|
101 |
+
# Add user message to chat history
|
102 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
103 |
+
|
104 |
+
# Display assistant response in chat message container
|
105 |
+
with st.chat_message("assistant"):
|
106 |
+
|
107 |
+
try:
|
108 |
+
# Stream the response from the model
|
109 |
+
stream = client.chat.completions.create(
|
110 |
+
model="meta-llama/Meta-Llama-3-8B-Instruct",
|
111 |
+
messages=[
|
112 |
+
{"role": m["role"], "content": m["content"]}
|
113 |
+
for m in st.session_state.messages
|
114 |
+
],
|
115 |
+
temperature=0.5,
|
116 |
+
stream=True,
|
117 |
+
max_tokens=3000,
|
118 |
+
)
|
119 |
+
|
120 |
+
response = st.write_stream(stream)
|
121 |
+
|
122 |
+
except Exception as e:
|
123 |
+
response = "😵💫 Something went wrong. Try again later."
|
124 |
+
st.write(response)
|
125 |
+
|
126 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
127 |
+
|
128 |
+
# If the user selects Data Generation
|
129 |
+
else:
|
130 |
+
st.sidebar.write("This feature will allow you to generate new data. Coming soon!")
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|