Spaces:
Sleeping
Sleeping
Create app222.py
Browse files
app222.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import streamlit as st
|
3 |
+
from openai import OpenAI
|
4 |
+
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import random
|
7 |
+
|
8 |
+
os.environ["BROWSER_GATHERUSAGESTATS"] = "false"
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
# Initialize the client
|
12 |
+
client = OpenAI(
|
13 |
+
base_url="https://api-inference.huggingface.co/v1",
|
14 |
+
api_key=os.environ.get('GP2_2') # Add your Huggingface token here
|
15 |
+
)
|
16 |
+
|
17 |
+
# Supported models
|
18 |
+
model_links = {
|
19 |
+
"Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
|
20 |
+
}
|
21 |
+
|
22 |
+
# Reset conversation
|
23 |
+
def reset_conversation():
|
24 |
+
st.session_state.conversation = []
|
25 |
+
st.session_state.messages = []
|
26 |
+
return None
|
27 |
+
|
28 |
+
# Define the available models
|
29 |
+
models = [key for key in model_links.keys()]
|
30 |
+
|
31 |
+
# Sidebar for model selection
|
32 |
+
selected_model = st.sidebar.selectbox("Select Model", models)
|
33 |
+
|
34 |
+
# Temperature slider with default adjusted for labeling consistency
|
35 |
+
temp_values = st.sidebar.slider('Select a temperature value', 0.1, 1.0, 0.3)
|
36 |
+
|
37 |
+
# Reset button
|
38 |
+
st.sidebar.button('Reset Chat', on_click=reset_conversation)
|
39 |
+
|
40 |
+
# Model description
|
41 |
+
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
42 |
+
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
|
43 |
+
|
44 |
+
# Chat initialization
|
45 |
+
if "messages" not in st.session_state:
|
46 |
+
st.session_state.messages = []
|
47 |
+
|
48 |
+
# Display chat messages
|
49 |
+
for message in st.session_state.messages:
|
50 |
+
with st.chat_message(message["role"]):
|
51 |
+
st.markdown(message["content"])
|
52 |
+
|
53 |
+
# Main logic to choose between data generation and data labeling
|
54 |
+
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
|
55 |
+
|
56 |
+
if task_choice == "Data Generation":
|
57 |
+
classification_type = st.selectbox(
|
58 |
+
"Choose Classification Type",
|
59 |
+
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
|
60 |
+
)
|
61 |
+
if classification_type == "Sentiment Analysis":
|
62 |
+
st.write("Sentiment Analysis: Positive, Negative, Neutral")
|
63 |
+
labels = ["Positive", "Negative", "Neutral"]
|
64 |
+
elif classification_type == "Binary Classification":
|
65 |
+
label_1 = st.text_input("Enter first class")
|
66 |
+
label_2 = st.text_input("Enter second class")
|
67 |
+
labels = [label_1, label_2]
|
68 |
+
elif classification_type == "Multi-Class Classification":
|
69 |
+
num_classes = st.slider("How many classes?", 3, 10, 3)
|
70 |
+
labels = [st.text_input(f"Class {i + 1}") for i in range(num_classes)]
|
71 |
+
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
|
72 |
+
if domain == "Custom":
|
73 |
+
domain = st.text_input("Specify custom domain")
|
74 |
+
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
|
75 |
+
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
|
76 |
+
few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
|
77 |
+
if few_shot == "Yes":
|
78 |
+
num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
|
79 |
+
few_shot_examples = [
|
80 |
+
{"content": st.text_area(f"Example {i + 1}", key=f"few_shot_{i}"), "label": st.selectbox(f"Label for example {i + 1}", labels, key=f"label_{i}")}
|
81 |
+
for i in range(num_examples)
|
82 |
+
]
|
83 |
+
else:
|
84 |
+
few_shot_examples = []
|
85 |
+
|
86 |
+
# Ask the user how many examples they need
|
87 |
+
num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10)
|
88 |
+
# User prompt text field
|
89 |
+
user_prompt = st.text_area("Enter your prompt to guide example generation", "")
|
90 |
+
# System prompt generation
|
91 |
+
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
|
92 |
+
if few_shot_examples:
|
93 |
+
system_prompt += "Use the following few-shot examples as a reference:\n"
|
94 |
+
for example in few_shot_examples:
|
95 |
+
system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
|
96 |
+
system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
|
97 |
+
system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
|
98 |
+
system_prompt += f"Use the labels specified: {', '.join(labels)}.\n"
|
99 |
+
if user_prompt:
|
100 |
+
system_prompt += f"Additional instructions: {user_prompt}\n"
|
101 |
+
st.write("System Prompt:")
|
102 |
+
st.code(system_prompt)
|
103 |
+
|
104 |
+
if st.button("Generate Examples"):
|
105 |
+
# Generate examples by concatenating all inputs and sending it to the model
|
106 |
+
with st.spinner("Generating..."):
|
107 |
+
st.session_state.messages.append({"role": "system", "content": system_prompt})
|
108 |
+
try:
|
109 |
+
stream = client.chat_completions.create(
|
110 |
+
model=model_links[selected_model],
|
111 |
+
messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages],
|
112 |
+
temperature=temp_values,
|
113 |
+
stream=True,
|
114 |
+
max_tokens=3000
|
115 |
+
)
|
116 |
+
response = ""
|
117 |
+
for chunk in stream:
|
118 |
+
response += chunk['choices'][0]['delta']['content']
|
119 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
120 |
+
st.markdown(response)
|
121 |
+
except Exception as e:
|
122 |
+
st.write("Error during generation. Please try again.")
|
123 |
+
st.write(e)
|
124 |
+
else:
|
125 |
+
# Data labeling workflow
|
126 |
+
st.write("Data Labeling functionality")
|
127 |
+
|
128 |
+
# Initialize session state variables for classification
|
129 |
+
if "labels" not in st.session_state:
|
130 |
+
st.session_state.labels = []
|
131 |
+
if "few_shot_examples" not in st.session_state:
|
132 |
+
st.session_state.few_shot_examples = []
|
133 |
+
if "examples_to_classify" not in st.session_state:
|
134 |
+
st.session_state.examples_to_classify = []
|
135 |
+
|
136 |
+
# Step 1: Classification Type Selection
|
137 |
+
classification_type = st.selectbox("Choose Classification Type", ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"])
|
138 |
+
|
139 |
+
# Step 2: Define Labels based on Classification Type
|
140 |
+
if classification_type == "Sentiment Analysis":
|
141 |
+
labels = ["Positive", "Negative", "Neutral"]
|
142 |
+
st.write("Sentiment Analysis labels: Positive, Negative, Neutral")
|
143 |
+
elif classification_type == "Binary Classification":
|
144 |
+
label_1 = st.text_input("Enter first class")
|
145 |
+
label_2 = st.text_input("Enter second class")
|
146 |
+
if label_1 and label_2:
|
147 |
+
labels = [label_1, label_2]
|
148 |
+
else:
|
149 |
+
labels = []
|
150 |
+
elif classification_type is "Multi-Class Classification":
|
151 |
+
num_classes = st.slider("How many classes?", 3, 10, 3)
|
152 |
+
labels = [st.text_input(f"Class {i + 1}", key=f"multi_class_{i}") for i in range(num_classes)]
|
153 |
+
|
154 |
+
# Save labels to session state
|
155 |
+
st.session_state.labels = labels
|
156 |
+
|
157 |
+
# Step 3: Few-Shot Examples
|
158 |
+
use_few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
|
159 |
+
if use_few_shot == "Yes":
|
160 |
+
num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
|
161 |
+
st.session_state.few_shot_examples
|