Wedyan2023 commited on
Commit
eda684e
·
verified ·
1 Parent(s): b7d0874

Create app222.py

Browse files
Files changed (1) hide show
  1. app222.py +161 -0
app222.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import streamlit as st
3
+ from openai import OpenAI
4
+ import os
5
+ from dotenv import load_dotenv
6
+ import random
7
+
8
+ os.environ["BROWSER_GATHERUSAGESTATS"] = "false"
9
+ load_dotenv()
10
+
11
+ # Initialize the client
12
+ client = OpenAI(
13
+ base_url="https://api-inference.huggingface.co/v1",
14
+ api_key=os.environ.get('GP2_2') # Add your Huggingface token here
15
+ )
16
+
17
+ # Supported models
18
+ model_links = {
19
+ "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
20
+ }
21
+
22
+ # Reset conversation
23
+ def reset_conversation():
24
+ st.session_state.conversation = []
25
+ st.session_state.messages = []
26
+ return None
27
+
28
+ # Define the available models
29
+ models = [key for key in model_links.keys()]
30
+
31
+ # Sidebar for model selection
32
+ selected_model = st.sidebar.selectbox("Select Model", models)
33
+
34
+ # Temperature slider with default adjusted for labeling consistency
35
+ temp_values = st.sidebar.slider('Select a temperature value', 0.1, 1.0, 0.3)
36
+
37
+ # Reset button
38
+ st.sidebar.button('Reset Chat', on_click=reset_conversation)
39
+
40
+ # Model description
41
+ st.sidebar.write(f"You're now chatting with **{selected_model}**")
42
+ st.sidebar.markdown("*Generated content may be inaccurate or false.*")
43
+
44
+ # Chat initialization
45
+ if "messages" not in st.session_state:
46
+ st.session_state.messages = []
47
+
48
+ # Display chat messages
49
+ for message in st.session_state.messages:
50
+ with st.chat_message(message["role"]):
51
+ st.markdown(message["content"])
52
+
53
+ # Main logic to choose between data generation and data labeling
54
+ task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
55
+
56
+ if task_choice == "Data Generation":
57
+ classification_type = st.selectbox(
58
+ "Choose Classification Type",
59
+ ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
60
+ )
61
+ if classification_type == "Sentiment Analysis":
62
+ st.write("Sentiment Analysis: Positive, Negative, Neutral")
63
+ labels = ["Positive", "Negative", "Neutral"]
64
+ elif classification_type == "Binary Classification":
65
+ label_1 = st.text_input("Enter first class")
66
+ label_2 = st.text_input("Enter second class")
67
+ labels = [label_1, label_2]
68
+ elif classification_type == "Multi-Class Classification":
69
+ num_classes = st.slider("How many classes?", 3, 10, 3)
70
+ labels = [st.text_input(f"Class {i + 1}") for i in range(num_classes)]
71
+ domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
72
+ if domain == "Custom":
73
+ domain = st.text_input("Specify custom domain")
74
+ min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
75
+ max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
76
+ few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
77
+ if few_shot == "Yes":
78
+ num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
79
+ few_shot_examples = [
80
+ {"content": st.text_area(f"Example {i + 1}", key=f"few_shot_{i}"), "label": st.selectbox(f"Label for example {i + 1}", labels, key=f"label_{i}")}
81
+ for i in range(num_examples)
82
+ ]
83
+ else:
84
+ few_shot_examples = []
85
+
86
+ # Ask the user how many examples they need
87
+ num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10)
88
+ # User prompt text field
89
+ user_prompt = st.text_area("Enter your prompt to guide example generation", "")
90
+ # System prompt generation
91
+ system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
92
+ if few_shot_examples:
93
+ system_prompt += "Use the following few-shot examples as a reference:\n"
94
+ for example in few_shot_examples:
95
+ system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
96
+ system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
97
+ system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
98
+ system_prompt += f"Use the labels specified: {', '.join(labels)}.\n"
99
+ if user_prompt:
100
+ system_prompt += f"Additional instructions: {user_prompt}\n"
101
+ st.write("System Prompt:")
102
+ st.code(system_prompt)
103
+
104
+ if st.button("Generate Examples"):
105
+ # Generate examples by concatenating all inputs and sending it to the model
106
+ with st.spinner("Generating..."):
107
+ st.session_state.messages.append({"role": "system", "content": system_prompt})
108
+ try:
109
+ stream = client.chat_completions.create(
110
+ model=model_links[selected_model],
111
+ messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages],
112
+ temperature=temp_values,
113
+ stream=True,
114
+ max_tokens=3000
115
+ )
116
+ response = ""
117
+ for chunk in stream:
118
+ response += chunk['choices'][0]['delta']['content']
119
+ st.session_state.messages.append({"role": "assistant", "content": response})
120
+ st.markdown(response)
121
+ except Exception as e:
122
+ st.write("Error during generation. Please try again.")
123
+ st.write(e)
124
+ else:
125
+ # Data labeling workflow
126
+ st.write("Data Labeling functionality")
127
+
128
+ # Initialize session state variables for classification
129
+ if "labels" not in st.session_state:
130
+ st.session_state.labels = []
131
+ if "few_shot_examples" not in st.session_state:
132
+ st.session_state.few_shot_examples = []
133
+ if "examples_to_classify" not in st.session_state:
134
+ st.session_state.examples_to_classify = []
135
+
136
+ # Step 1: Classification Type Selection
137
+ classification_type = st.selectbox("Choose Classification Type", ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"])
138
+
139
+ # Step 2: Define Labels based on Classification Type
140
+ if classification_type == "Sentiment Analysis":
141
+ labels = ["Positive", "Negative", "Neutral"]
142
+ st.write("Sentiment Analysis labels: Positive, Negative, Neutral")
143
+ elif classification_type == "Binary Classification":
144
+ label_1 = st.text_input("Enter first class")
145
+ label_2 = st.text_input("Enter second class")
146
+ if label_1 and label_2:
147
+ labels = [label_1, label_2]
148
+ else:
149
+ labels = []
150
+ elif classification_type is "Multi-Class Classification":
151
+ num_classes = st.slider("How many classes?", 3, 10, 3)
152
+ labels = [st.text_input(f"Class {i + 1}", key=f"multi_class_{i}") for i in range(num_classes)]
153
+
154
+ # Save labels to session state
155
+ st.session_state.labels = labels
156
+
157
+ # Step 3: Few-Shot Examples
158
+ use_few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
159
+ if use_few_shot == "Yes":
160
+ num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
161
+ st.session_state.few_shot_examples