### اول كود للابيلنق اشتغل بس مافرق بين ريكوند و نت ريكومند import numpy as np import streamlit as st from openai import OpenAI import os from dotenv import load_dotenv import random # Load environment variables os.environ["BROWSER_GATHERUSAGESTATS"] = "false" load_dotenv() # Initialize the client client = OpenAI( base_url="https://api-inference.huggingface.co/v1", api_key=os.environ.get('GP2') # Replace with your Huggingface token ) # Initialize session state variables if they are not already defined if "labels" not in st.session_state: st.session_state.labels = [] if "few_shot_examples" not in st.session_state: st.session_state.few_shot_examples = [] if "examples_to_classify" not in st.session_state: st.session_state.examples_to_classify = [] if "messages" not in st.session_state: st.session_state.messages = [] # Sidebar for model selection and temperature setting selected_model = st.sidebar.selectbox("Select Model", ["Meta-Llama-3-8B"], key="model_select") temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5, key="temp_slider") # Reset conversation button st.sidebar.button('Reset Chat', on_click=lambda: (st.session_state.update(conversation=[], messages=[])), key="reset_button") # Main task selection: Data Generation or Data Labeling task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"], key="task_choice_select") # Data Generation Section if task_choice == "Data Generation": classification_type = st.selectbox( "Choose Classification Type", ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"], key="classification_type_select" ) # Define labels based on classification type if classification_type == "Sentiment Analysis": st.session_state.labels = ["Positive", "Negative", "Neutral"] st.write("Sentiment Analysis: Positive, Negative, Neutral") elif classification_type == "Binary Classification": label_1 = st.text_input("Enter first class", key="binary_class_1") label_2 = st.text_input("Enter second class", key="binary_class_2") st.session_state.labels = [label_1, label_2] elif classification_type == "Multi-Class Classification": num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_slider") st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_{i+1}") for i in range(num_classes)] # Domain selection domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"], key="domain_select") if domain == "Custom": domain = st.text_input("Specify custom domain", key="custom_domain_input") # Word count selection min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10, key="min_words_input") max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90, key="max_words_input") # Few-shot examples option few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="few_shot_radio") if few_shot == "Yes": num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="num_examples_slider") st.session_state.few_shot_examples = [ { "content": st.text_area(f"Example {i+1} Text", key=f"example_text_{i+1}"), "label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_{i+1}") } for i in range(num_examples) ] else: st.session_state.few_shot_examples = [] # Number of examples to generate num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10, key="num_to_generate_input") # User prompt text field user_prompt = st.text_area("Enter your prompt to guide example generation", "", key="user_prompt_text_area") # System prompt generation system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n" if st.session_state.few_shot_examples: system_prompt += "Use the following few-shot examples as a reference:\n" for example in st.session_state.few_shot_examples: system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n" system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n" system_prompt += f"Each example should have between {min_words} and {max_words} words.\n" system_prompt += f"Use the labels specified: {', '.join(st.session_state.labels)}.\n" if user_prompt: system_prompt += f"Additional instructions: {user_prompt}\n" st.write("System Prompt:") st.code(system_prompt) if st.button("Generate Examples", key="generate_examples_button"): # Generate examples by concatenating all inputs and sending it to the model with st.spinner("Generating..."): st.session_state.messages.append({"role": "system", "content": system_prompt}) try: stream = client.chat.completions.create( model=selected_model, messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], temperature=temp_values, stream=True, max_tokens=3000, ) response = "" for chunk in stream: response += chunk['choices'][0]['delta'].get('content', '') st.write(response) except Exception as e: st.error(f"Error during generation: {e}") st.session_state.messages.append({"role": "assistant", "content": response}) # Data Labeling Section else: # Classification Type and Labels Setup classification_type = st.selectbox("Choose Classification Type", ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"], key="classification_type_labeling") if classification_type == "Sentiment Analysis": st.session_state.labels = ["Positive", "Negative", "Neutral"] st.write("Sentiment Analysis labels: Positive, Negative, Neutral") elif classification_type == "Binary Classification": label_1 = st.text_input("Enter first class", key="binary_class_1_labeling") label_2 = st.text_input("Enter second class", key="binary_class_2_labeling") st.session_state.labels = [label_1, label_2] elif classification_type == "Multi-Class Classification": num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_labeling") st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_labeling_{i+1}") for i in range(num_classes)] # Few-shot examples for labeling use_few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="use_few_shot_labeling") if use_few_shot == "Yes": num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="few_shot_num_labeling") st.session_state.few_shot_examples = [ { "content": st.text_area(f"Example {i+1} Text", key=f"example_text_labeling_{i+1}"), "label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_labeling_{i+1}") } for i in range(num_examples) ] else: st.session_state.few_shot_examples = [] # Input Examples for Classification num_to_classify = st.number_input("How many examples do you want to classify?", min_value=1, max_value=100, value=5, key="num_to_classify_input") st.session_state.examples_to_classify = [st.text_area(f"Example {i+1} Text", key=f"example_classify_text_{i+1}") for i in range(num_to_classify)] # Placeholder for classification function (can be replaced with actual API call) def classify_examples(examples, labels): classified_results = [{"example": ex, "label": random.choice(labels)} for ex in examples] return classified_results # Classification results display if st.button("Classify Examples", key="classify_button"): results = classify_examples(st.session_state.examples_to_classify, st.session_state.labels) st.write("Classification Results:") for result in results: st.write(f"Example: {result['example']}\nLabel: {result['label']}\n") شحح