Weedoo's picture
add async
dacd607 verified
raw
history blame
6.94 kB
import pandas as pd
import arxiv
import requests
from pinecone import Pinecone, ServerlessSpec
import logging
import os
import asyncio
from dotenv import load_dotenv
load_dotenv(".env")
script_dir = os.path.dirname(os.path.abspath(__file__))
os.chdir(script_dir)
def get_zotero_ids(api_key, library_id, tag):
base_url = "https://api.zotero.org"
suffix = "/users/" + library_id + "/items?tag=" + tag
header = {"Authorization": "Bearer " + api_key}
request = requests.get(base_url + suffix, headers=header)
return [data["data"]["archiveID"].replace("arXiv:", "") for data in request.json()]
def get_arxiv_papers(ids=None, category=None, comment=None):
logging.getLogger("arxiv").setLevel(logging.WARNING)
client = arxiv.Client()
if category is None:
search = arxiv.Search(
id_list=ids,
max_results=len(ids),
)
else:
if comment is None:
custom_query = f"cat:{category}"
else:
custom_query = f"cat:{category} AND co:{comment}"
search = arxiv.Search(
query=custom_query,
max_results=15,
sort_by=arxiv.SortCriterion.SubmittedDate,
)
if ids is None and category is None:
raise ValueError("not a valid query")
df = pd.DataFrame(
{
"Title": [result.title for result in client.results(search)],
"Abstract": [
result.summary.replace("\n", " ") for result in client.results(search)
],
"Date": [
result.published.date().strftime("%Y-%m-%d")
for result in client.results(search)
],
"id": [result.entry_id for result in client.results(search)],
}
)
if ids:
df.to_csv("arxiv-scrape.csv", index=False)
return df
def get_hf_embeddings(api_key, df):
title_abs = [
title + "[SEP]" + abstract
for title, abstract in zip(df["Title"], df["Abstract"])
]
API_URL = "https://api-inference.huggingface.co/models/malteos/scincl"
headers = {"Authorization": f"Bearer {api_key}"}
response = requests.post(
API_URL, headers=headers, json={"inputs": title_abs, "wait_for_model": False}
)
print(str(response.status_code) + "This part needs an update, causing KeyError 0")
if response.status_code == 503:
response = asyncio.run(
asyncio.to_thread(
requests.post,
API_URL,
headers=headers,
json={"inputs": title_abs, "wait_for_model": True},
)
)
# response = requests.post(
# API_URL, headers=headers, json={"inputs": title_abs, "wait_for_model": True}
# )
embeddings = response.json()
return embeddings, len(embeddings[0])
def upload_to_pinecone(api_key, index, namespace, embeddings, dim, df):
input = [
{"id": df["id"][i], "values": embeddings[i]} for i in range(len(embeddings))
]
pc = Pinecone(api_key=api_key)
if index in pc.list_indexes().names():
while True:
logging.warning(f"Index name : {index} already exists.")
return f"Index name : {index} already exists"
pc.create_index(
name=index,
dimension=dim,
metric="cosine",
spec=ServerlessSpec(cloud="aws", region="us-east-1"),
)
index = pc.Index(index)
return index.upsert(vectors=input, namespace=namespace)
def main():
script_dir = os.path.dirname(os.path.abspath(__file__))
os.chdir(script_dir)
logging.basicConfig(
filename="logs/logfile.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
logging.getLogger("arxiv").setLevel(logging.WARNING)
logging.info("Project Initialization Script Started (Serverless)")
ids = get_zotero_ids(
os.getenv("ZOTERO_API_KEY"),
os.getenv("ZOTERO_LIBRARY_ID"),
os.getenv("ZOTERO_TAG"),
)
print(ids)
df = get_arxiv_papers(ids=ids)
embeddings, dim = get_hf_embeddings(os.getenv("HF_API_KEY"), df)
feedback = upload_to_pinecone(
api_key=os.getenv("PINECONE_API_KEY"),
index=os.getenv("INDEX_NAME"),
namespace=os.getenv("NAMESPACE_NAME"),
embeddings=embeddings,
dim=dim,
df=df,
)
logging.info(feedback)
if feedback is dict:
return f"Retrieved {len(ids)} papers from Zotero. Successfully upserted {feedback['upserted_count']} embeddings in {os.getenv('NAMESPACE_NAME')} namespace."
else:
return feedback
def get_new_papers(df):
df_main = pd.read_csv("arxiv-scrape.csv")
df.reset_index(inplace=True)
df.drop(columns=["index"], inplace=True)
union_df = df.merge(df_main, how="left", indicator=True)
df = union_df[union_df["_merge"] == "left_only"].drop(columns=["_merge"])
if df.empty:
return "No New Papers Found"
else:
df_main = pd.concat([df_main, df], ignore_index=True)
df_main.drop_duplicates(inplace=True)
df_main.to_csv("arxiv-scrape.csv", index=False)
return df
def recommend_papers(api_key, index, namespace, embeddings, df, threshold):
pc = Pinecone(api_key=api_key)
if index in pc.list_indexes().names():
index = pc.Index(index)
else:
raise ValueError(f"{index} doesnt exist. Project isnt initialized properly")
results = []
score_threshold = threshold
for i, embedding in enumerate(embeddings):
query = embedding
result = index.query(
namespace=namespace, vector=query, top_k=3, include_values=False
)
sum_score = sum(match["score"] for match in result["matches"])
if sum_score > score_threshold:
results.append(
f"Paper-URL : [{df['id'][i]}]({df['id'][i]}) with score: {sum_score / 3} <br />"
)
if results:
return "\n".join(results)
else:
return "No Interesting Paper"
def recs(threshold):
logging.info("Weekly Script Started (Serverless)")
df = get_arxiv_papers(
category=os.getenv("ARXIV_CATEGORY_NAME"),
comment=os.getenv("ARXIV_COMMENT_QUERY"),
)
df = get_new_papers(df)
if not isinstance(df, pd.DataFrame):
return df
embeddings, _ = get_hf_embeddings(os.getenv("HF_API_KEY"), df)
results = recommend_papers(
os.getenv("PINECONE_API_KEY"),
os.getenv("INDEX_NAME"),
os.getenv("NAMESPACE_NAME"),
embeddings,
df,
threshold,
)
return results
if __name__ == "__main__":
choice = int(input("1. Initialize\n2. Recommend Papers\n"))
if choice == 1:
print(main())
elif choice == 2:
threshold = float(input("Enter Similarity Threshold"))
print(recs(threshold))
else:
raise ValueError("Invalid Input")