WeixuanYuan commited on
Commit
1aeca03
·
verified ·
1 Parent(s): ac18d43

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +107 -0
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from tqdm import tqdm
4
+ from model.DiffSynthSampler import DiffSynthSampler
5
+ import soundfile as sf
6
+ import pyrubberband as pyrb
7
+ from tqdm import tqdm
8
+ from model.VQGAN import get_VQGAN
9
+ from model.diffusion import get_diffusion_model
10
+ from transformers import AutoTokenizer, ClapModel
11
+ from model.diffusion_components import linear_beta_schedule
12
+ from model.timbre_encoder_pretrain import get_timbre_encoder
13
+ from model.multimodal_model import get_multi_modal_model
14
+
15
+
16
+
17
+ import gradio as gr
18
+ from webUI.natural_language_guided.gradio_webUI import GradioWebUI
19
+ from webUI.natural_language_guided.text2sound import get_text2sound_module
20
+ from webUI.natural_language_guided.sound2sound_with_text import get_sound2sound_with_text_module
21
+ from webUI.natural_language_guided.inpaint_with_text import get_inpaint_with_text_module
22
+ # from webUI.natural_language_guided.build_instrument import get_build_instrument_module
23
+ from webUI.natural_language_guided.README import get_readme_module
24
+
25
+
26
+
27
+ device = "cuda" if torch.cuda.is_available() else "CPU"
28
+ use_pretrained_CLAP = False
29
+
30
+ # load VQ-GAN
31
+ VAE_model_name = "24_1_2024-52_4x_L_D"
32
+ modelConfig = {"in_channels": 3, "hidden_channels": [80, 160], "embedding_dim": 4, "out_channels": 3, "block_depth": 2,
33
+ "attn_pos": [80, 160], "attn_with_skip": True,
34
+ "num_embeddings": 8192, "commitment_cost": 0.25, "decay": 0.99,
35
+ "norm_type": "groupnorm", "act_type": "swish", "num_groups": 16}
36
+ VAE = get_VQGAN(modelConfig, load_pretrain=True, model_name=VAE_model_name, device=device)
37
+
38
+ # load U-Net
39
+ UNet_model_name = "history/28_1_2024_CLAP_STFT_180000" if use_pretrained_CLAP else "history/28_1_2024_TE_STFT_300000"
40
+ unetConfig = {"in_dim": 4, "down_dims": [96, 96, 192, 384], "up_dims": [384, 384, 192, 96], "attn_type": "linear_add", "condition_type": "natural_language_prompt", "label_emb_dim": 512}
41
+ uNet = get_diffusion_model(unetConfig, load_pretrain=True, model_name=UNet_model_name, device=device)
42
+
43
+ # load LM
44
+ CLAP_temp = ClapModel.from_pretrained("laion/clap-htsat-unfused") # 153,492,890
45
+ CLAP_tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
46
+
47
+ timbre_encoder_name = "24_1_2024_STFT"
48
+ timbre_encoder_Config = {"input_dim": 512, "feature_dim": 512, "hidden_dim": 1024, "num_instrument_classes": 1006, "num_instrument_family_classes": 11, "num_velocity_classes": 128, "num_qualities": 10, "num_layers": 3}
49
+ timbre_encoder = get_timbre_encoder(timbre_encoder_Config, load_pretrain=True, model_name=timbre_encoder_name, device=device)
50
+
51
+ if use_pretrained_CLAP:
52
+ text_encoder = CLAP_temp
53
+ else:
54
+ multimodalmodel_name = "24_1_2024"
55
+ multimodalmodel_config = {"text_feature_dim": 512, "spectrogram_feature_dim": 1024, "multi_modal_emb_dim": 512, "num_projection_layers": 2,
56
+ "temperature": 1.0, "dropout": 0.1, "freeze_text_encoder": False, "freeze_spectrogram_encoder": False}
57
+ mmm = get_multi_modal_model(timbre_encoder, CLAP_temp, multimodalmodel_config, load_pretrain=True, model_name=multimodalmodel_name, device=device)
58
+
59
+ text_encoder = mmm.to("cpu")
60
+
61
+
62
+
63
+
64
+
65
+
66
+ gradioWebUI = GradioWebUI(device, VAE, uNet, text_encoder, CLAP_tokenizer, freq_resolution=512, time_resolution=256, channels=4, timesteps=1000, squared=False,
67
+ VAE_scale=4, flexible_duration=True, noise_strategy="repeat", GAN_generator=None)
68
+
69
+ with gr.Blocks(theme=gr.themes.Soft(), mode="dark") as demo:
70
+ # with gr.Blocks(theme='WeixuanYuan/Soft_dark', mode="dark") as demo:
71
+ gr.Markdown("DiffuSynth v0.2")
72
+
73
+ reconstruction_state = gr.State(value={})
74
+ text2sound_state = gr.State(value={})
75
+ sound2sound_state = gr.State(value={})
76
+ inpaint_state = gr.State(value={})
77
+ super_resolution_state = gr.State(value={})
78
+ virtual_instruments_state = gr.State(value={"virtual_instruments": {}})
79
+
80
+ get_text2sound_module(gradioWebUI, text2sound_state, virtual_instruments_state)
81
+ get_sound2sound_with_text_module(gradioWebUI, sound2sound_state, virtual_instruments_state)
82
+ get_inpaint_with_text_module(gradioWebUI, inpaint_state, virtual_instruments_state)
83
+ # get_build_instrument_module(gradioWebUI, virtual_instruments_state)
84
+ get_readme_module()
85
+
86
+ demo.launch(debug=True, share=True)
87
+
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+
107
+