add database
Browse files- modules/chat_func.py +157 -82
- templates/4 川虎的Prompts.json +4 -0
modules/chat_func.py
CHANGED
@@ -14,7 +14,6 @@ from duckduckgo_search import ddg
|
|
14 |
import asyncio
|
15 |
import aiohttp
|
16 |
|
17 |
-
|
18 |
from modules.presets import *
|
19 |
from modules.llama_func import *
|
20 |
from modules.utils import *
|
@@ -26,18 +25,19 @@ from modules.config import retrieve_proxy
|
|
26 |
if TYPE_CHECKING:
|
27 |
from typing import TypedDict
|
28 |
|
|
|
29 |
class DataframeData(TypedDict):
|
30 |
headers: List[str]
|
31 |
data: List[List[str | int | bool]]
|
32 |
|
33 |
-
|
34 |
initial_prompt = "You are a helpful assistant."
|
35 |
HISTORY_DIR = "history"
|
36 |
TEMPLATES_DIR = "templates"
|
37 |
|
38 |
-
|
|
|
39 |
def get_response(
|
40 |
-
|
41 |
):
|
42 |
headers = {
|
43 |
"Content-Type": "application/json",
|
@@ -61,7 +61,6 @@ def get_response(
|
|
61 |
else:
|
62 |
timeout = timeout_all
|
63 |
|
64 |
-
|
65 |
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
|
66 |
if shared.state.completion_url != COMPLETION_URL:
|
67 |
logging.info(f"使用自定义API URL: {shared.state.completion_url}")
|
@@ -79,17 +78,17 @@ def get_response(
|
|
79 |
|
80 |
|
81 |
def stream_predict(
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
):
|
94 |
def get_return_value():
|
95 |
return chatbot, history, status_text, all_token_counts
|
@@ -112,7 +111,7 @@ def stream_predict(
|
|
112 |
if len(all_token_counts) == 0:
|
113 |
system_prompt_token_count = count_token(construct_system(system_prompt))
|
114 |
user_token_count = (
|
115 |
-
|
116 |
)
|
117 |
else:
|
118 |
user_token_count = input_token_count
|
@@ -120,6 +119,7 @@ def stream_predict(
|
|
120 |
logging.info(f"输入token计数: {user_token_count}")
|
121 |
yield get_return_value()
|
122 |
try:
|
|
|
123 |
response = get_response(
|
124 |
openai_api_key,
|
125 |
system_prompt,
|
@@ -129,9 +129,80 @@ def stream_predict(
|
|
129 |
True,
|
130 |
selected_model,
|
131 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
except requests.exceptions.ConnectTimeout:
|
133 |
status_text = (
|
134 |
-
|
135 |
)
|
136 |
yield get_return_value()
|
137 |
return
|
@@ -171,34 +242,34 @@ def stream_predict(
|
|
171 |
break
|
172 |
try:
|
173 |
partial_words = (
|
174 |
-
|
175 |
)
|
176 |
except KeyError:
|
177 |
status_text = (
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
)
|
182 |
yield get_return_value()
|
183 |
break
|
184 |
history[-1] = construct_assistant(partial_words)
|
185 |
-
chatbot[-1] = (chatbot[-1][0], partial_words+display_append)
|
186 |
all_token_counts[-1] += 1
|
187 |
yield get_return_value()
|
188 |
|
189 |
|
190 |
def predict_all(
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
):
|
203 |
logging.info("一次性回答模式")
|
204 |
history.append(construct_user(inputs))
|
@@ -223,7 +294,7 @@ def predict_all(
|
|
223 |
)
|
224 |
except requests.exceptions.ConnectTimeout:
|
225 |
status_text = (
|
226 |
-
|
227 |
)
|
228 |
return chatbot, history, status_text, all_token_counts
|
229 |
except requests.exceptions.ProxyError:
|
@@ -238,7 +309,7 @@ def predict_all(
|
|
238 |
try:
|
239 |
content = response["choices"][0]["message"]["content"]
|
240 |
history[-1] = construct_assistant(content)
|
241 |
-
chatbot[-1] = (chatbot[-1][0], content+display_append)
|
242 |
total_token_count = response["usage"]["total_tokens"]
|
243 |
if fake_input is not None:
|
244 |
all_token_counts[-1] += count_token(construct_assistant(content))
|
@@ -252,29 +323,31 @@ def predict_all(
|
|
252 |
|
253 |
|
254 |
def predict(
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
): # repetition_penalty, top_k
|
|
|
|
|
|
|
270 |
from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery
|
271 |
from llama_index.indices.query.schema import QueryBundle
|
272 |
from langchain.llms import OpenAIChat
|
273 |
|
274 |
-
|
275 |
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
|
276 |
if should_check_token_count:
|
277 |
-
yield chatbot+[(inputs, "")], history, "开始生成回答……", all_token_counts
|
278 |
if reply_language == "跟随问题语言(不稳定)":
|
279 |
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
|
280 |
old_inputs = None
|
@@ -285,17 +358,19 @@ def predict(
|
|
285 |
old_inputs = inputs
|
286 |
msg = "加载索引中……(这可能需要几分钟)"
|
287 |
logging.info(msg)
|
288 |
-
yield chatbot+[(inputs, "")], history, msg, all_token_counts
|
289 |
index = construct_index(openai_api_key, file_src=files)
|
290 |
msg = "索引构建完成,获取回答中……"
|
291 |
logging.info(msg)
|
292 |
-
yield chatbot+[(inputs, "")], history, msg, all_token_counts
|
293 |
with retrieve_proxy():
|
294 |
llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name=selected_model))
|
295 |
-
prompt_helper = PromptHelper(max_input_size
|
296 |
from llama_index import ServiceContext
|
297 |
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
298 |
-
query_object = GPTVectorStoreIndexQuery(index.index_struct, service_context=service_context,
|
|
|
|
|
299 |
query_bundle = QueryBundle(inputs)
|
300 |
nodes = query_object.retrieve(query_bundle)
|
301 |
reference_results = [n.node.text for n in nodes]
|
@@ -306,7 +381,7 @@ def predict(
|
|
306 |
replace_today(PROMPT_TEMPLATE)
|
307 |
.replace("{query_str}", inputs)
|
308 |
.replace("{context_str}", "\n\n".join(reference_results))
|
309 |
-
.replace("{reply_language}", reply_language
|
310 |
)
|
311 |
elif use_websearch:
|
312 |
limited_context = True
|
@@ -317,14 +392,14 @@ def predict(
|
|
317 |
logging.info(f"搜索结果{idx + 1}:{result}")
|
318 |
domain_name = urllib3.util.parse_url(result["href"]).host
|
319 |
reference_results.append([result["body"], result["href"]])
|
320 |
-
display_reference.append(f"{idx+1}. [{domain_name}]({result['href']})\n")
|
321 |
reference_results = add_source_numbers(reference_results)
|
322 |
display_reference = "\n\n" + "".join(display_reference)
|
323 |
inputs = (
|
324 |
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
|
325 |
.replace("{query}", inputs)
|
326 |
.replace("{web_results}", "\n\n".join(reference_results))
|
327 |
-
.replace("{reply_language}", reply_language
|
328 |
)
|
329 |
else:
|
330 |
display_reference = ""
|
@@ -339,12 +414,12 @@ def predict(
|
|
339 |
all_token_counts.append(0)
|
340 |
else:
|
341 |
history[-2] = construct_user(inputs)
|
342 |
-
yield chatbot+[(inputs, "")], history, status_text, all_token_counts
|
343 |
return
|
344 |
elif len(inputs.strip()) == 0:
|
345 |
status_text = standard_error_msg + no_input_msg
|
346 |
logging.info(status_text)
|
347 |
-
yield chatbot+[(inputs, "")], history, status_text, all_token_counts
|
348 |
return
|
349 |
|
350 |
if stream:
|
@@ -416,16 +491,16 @@ def predict(
|
|
416 |
|
417 |
|
418 |
def retry(
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
):
|
430 |
logging.info("重试中……")
|
431 |
if len(history) == 0:
|
@@ -454,16 +529,16 @@ def retry(
|
|
454 |
|
455 |
|
456 |
def reduce_token_size(
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
):
|
468 |
logging.info("开始减少token数量……")
|
469 |
iter = predict(
|
@@ -487,7 +562,7 @@ def reduce_token_size(
|
|
487 |
if flag:
|
488 |
chatbot = chatbot[:-1]
|
489 |
flag = True
|
490 |
-
history = history[-2*num_chat:] if num_chat > 0 else []
|
491 |
token_count = previous_token_count[-num_chat:] if num_chat > 0 else []
|
492 |
msg = f"保留了最近{num_chat}轮对话"
|
493 |
yield chatbot, history, msg + "," + construct_token_message(
|
|
|
14 |
import asyncio
|
15 |
import aiohttp
|
16 |
|
|
|
17 |
from modules.presets import *
|
18 |
from modules.llama_func import *
|
19 |
from modules.utils import *
|
|
|
25 |
if TYPE_CHECKING:
|
26 |
from typing import TypedDict
|
27 |
|
28 |
+
|
29 |
class DataframeData(TypedDict):
|
30 |
headers: List[str]
|
31 |
data: List[List[str | int | bool]]
|
32 |
|
|
|
33 |
initial_prompt = "You are a helpful assistant."
|
34 |
HISTORY_DIR = "history"
|
35 |
TEMPLATES_DIR = "templates"
|
36 |
|
37 |
+
|
38 |
+
@shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
|
39 |
def get_response(
|
40 |
+
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model
|
41 |
):
|
42 |
headers = {
|
43 |
"Content-Type": "application/json",
|
|
|
61 |
else:
|
62 |
timeout = timeout_all
|
63 |
|
|
|
64 |
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
|
65 |
if shared.state.completion_url != COMPLETION_URL:
|
66 |
logging.info(f"使用自定义API URL: {shared.state.completion_url}")
|
|
|
78 |
|
79 |
|
80 |
def stream_predict(
|
81 |
+
openai_api_key,
|
82 |
+
system_prompt,
|
83 |
+
history,
|
84 |
+
inputs,
|
85 |
+
chatbot,
|
86 |
+
all_token_counts,
|
87 |
+
top_p,
|
88 |
+
temperature,
|
89 |
+
selected_model,
|
90 |
+
fake_input=None,
|
91 |
+
display_append=""
|
92 |
):
|
93 |
def get_return_value():
|
94 |
return chatbot, history, status_text, all_token_counts
|
|
|
111 |
if len(all_token_counts) == 0:
|
112 |
system_prompt_token_count = count_token(construct_system(system_prompt))
|
113 |
user_token_count = (
|
114 |
+
input_token_count + system_prompt_token_count
|
115 |
)
|
116 |
else:
|
117 |
user_token_count = input_token_count
|
|
|
119 |
logging.info(f"输入token计数: {user_token_count}")
|
120 |
yield get_return_value()
|
121 |
try:
|
122 |
+
# 如果能传入index,则此处里获得初筛后的店铺和菜名
|
123 |
response = get_response(
|
124 |
openai_api_key,
|
125 |
system_prompt,
|
|
|
129 |
True,
|
130 |
selected_model,
|
131 |
)
|
132 |
+
# 将response中的店铺和菜名提取出来
|
133 |
+
import re
|
134 |
+
|
135 |
+
text = """
|
136 |
+
好的,针对您想吃韩式烤肉的需求,我向您推荐以下店铺和菜品:
|
137 |
+
|
138 |
+
店铺名称:“青年烤肉店” 推荐菜品:烤牛肉、烤猪肉、烤羊肉
|
139 |
+
|
140 |
+
店铺名称:“西西里烤肉店” 推荐菜品:烤牛肉串、烤排骨、烤鸡肉
|
141 |
+
|
142 |
+
店铺名称:“韩式烤肉店” 推荐菜品:石锅拌饭、铁板烧、烤牛舌"""
|
143 |
+
|
144 |
+
pattern = r'店铺名称:(.+?) 推荐菜品:(.+)'
|
145 |
+
|
146 |
+
results = re.findall(pattern, response)
|
147 |
+
|
148 |
+
dicts = {}
|
149 |
+
import string
|
150 |
+
for result in results:
|
151 |
+
dicts[result[0]] = result[1].split('、')
|
152 |
+
|
153 |
+
logging.info(f"初筛后的店铺和菜品:{dicts}")
|
154 |
+
dishes = []
|
155 |
+
for restaurant, dish in dicts.items():
|
156 |
+
dishes.extend(dish)
|
157 |
+
|
158 |
+
dishes = '、'.join(dishes)
|
159 |
+
|
160 |
+
# 将初筛后的店铺和菜品送入构建好的CoT
|
161 |
+
prompt_with_ingredient = f"""
|
162 |
+
我需要你推测一些菜可能的原料以及其营养成分,输出格式如下:
|
163 |
+
|
164 |
+
菜品名称:[]
|
165 |
+
菜品原料:[原料1,原料2...]
|
166 |
+
营养成分:[成分(含量)]
|
167 |
+
|
168 |
+
注意,其中营养成分包括蛋白质、脂肪、碳水化合物、纤维素、维生素等,你可以根据你的知识添加其他成分。营养成分的含量分为无、低、中、高四个等级,需要填在成分后的括号内。
|
169 |
+
|
170 |
+
以下是需要你推测的菜品名称,不同菜品用顿号隔开:{dishes}
|
171 |
+
"""
|
172 |
+
|
173 |
+
logging.info(f"分析食物中营养成分的prompt构建完成:{prompt_with_ingredient}")
|
174 |
+
|
175 |
+
response_ingredient = get_response(
|
176 |
+
openai_api_key,
|
177 |
+
"",
|
178 |
+
prompt_with_ingredient,
|
179 |
+
temperature,
|
180 |
+
top_p,
|
181 |
+
True,
|
182 |
+
selected_model,
|
183 |
+
)
|
184 |
+
|
185 |
+
logging.info(f"得到食物中的营养成分:{response_ingredient}")
|
186 |
+
|
187 |
+
prompt_rec = f"""
|
188 |
+
以下是一些菜品名称和所属的店铺,我需要你根据我的需求从其中推荐一家店铺的一种或多种菜品,并给出推荐的理由。我的需求为:我有糖尿病,而且今天不想吃太油腻的食物。
|
189 |
+
|
190 |
+
{response_ingredient}
|
191 |
+
"""
|
192 |
+
response = get_response(
|
193 |
+
openai_api_key,
|
194 |
+
"",
|
195 |
+
prompt_rec,
|
196 |
+
temperature,
|
197 |
+
top_p,
|
198 |
+
True,
|
199 |
+
selected_model,
|
200 |
+
)
|
201 |
+
|
202 |
+
|
203 |
except requests.exceptions.ConnectTimeout:
|
204 |
status_text = (
|
205 |
+
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
|
206 |
)
|
207 |
yield get_return_value()
|
208 |
return
|
|
|
242 |
break
|
243 |
try:
|
244 |
partial_words = (
|
245 |
+
partial_words + chunk["choices"][0]["delta"]["content"]
|
246 |
)
|
247 |
except KeyError:
|
248 |
status_text = (
|
249 |
+
standard_error_msg
|
250 |
+
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: "
|
251 |
+
+ str(sum(all_token_counts))
|
252 |
)
|
253 |
yield get_return_value()
|
254 |
break
|
255 |
history[-1] = construct_assistant(partial_words)
|
256 |
+
chatbot[-1] = (chatbot[-1][0], partial_words + display_append)
|
257 |
all_token_counts[-1] += 1
|
258 |
yield get_return_value()
|
259 |
|
260 |
|
261 |
def predict_all(
|
262 |
+
openai_api_key,
|
263 |
+
system_prompt,
|
264 |
+
history,
|
265 |
+
inputs,
|
266 |
+
chatbot,
|
267 |
+
all_token_counts,
|
268 |
+
top_p,
|
269 |
+
temperature,
|
270 |
+
selected_model,
|
271 |
+
fake_input=None,
|
272 |
+
display_append=""
|
273 |
):
|
274 |
logging.info("一次性回答模式")
|
275 |
history.append(construct_user(inputs))
|
|
|
294 |
)
|
295 |
except requests.exceptions.ConnectTimeout:
|
296 |
status_text = (
|
297 |
+
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
|
298 |
)
|
299 |
return chatbot, history, status_text, all_token_counts
|
300 |
except requests.exceptions.ProxyError:
|
|
|
309 |
try:
|
310 |
content = response["choices"][0]["message"]["content"]
|
311 |
history[-1] = construct_assistant(content)
|
312 |
+
chatbot[-1] = (chatbot[-1][0], content + display_append)
|
313 |
total_token_count = response["usage"]["total_tokens"]
|
314 |
if fake_input is not None:
|
315 |
all_token_counts[-1] += count_token(construct_assistant(content))
|
|
|
323 |
|
324 |
|
325 |
def predict(
|
326 |
+
openai_api_key,
|
327 |
+
system_prompt,
|
328 |
+
history,
|
329 |
+
inputs,
|
330 |
+
chatbot,
|
331 |
+
all_token_counts,
|
332 |
+
top_p,
|
333 |
+
temperature,
|
334 |
+
stream=False,
|
335 |
+
selected_model=MODELS[0],
|
336 |
+
use_websearch=False,
|
337 |
+
files=None,
|
338 |
+
reply_language="中文",
|
339 |
+
should_check_token_count=True,
|
340 |
): # repetition_penalty, top_k
|
341 |
+
# CHANGE
|
342 |
+
# files = [{'name': 'database/cuc-pure.txt'}]
|
343 |
+
# CHANGE
|
344 |
from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery
|
345 |
from llama_index.indices.query.schema import QueryBundle
|
346 |
from langchain.llms import OpenAIChat
|
347 |
|
|
|
348 |
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
|
349 |
if should_check_token_count:
|
350 |
+
yield chatbot + [(inputs, "")], history, "开始生成回答……", all_token_counts
|
351 |
if reply_language == "跟随问题语言(不稳定)":
|
352 |
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
|
353 |
old_inputs = None
|
|
|
358 |
old_inputs = inputs
|
359 |
msg = "加载索引中……(这可能需要几分钟)"
|
360 |
logging.info(msg)
|
361 |
+
yield chatbot + [(inputs, "")], history, msg, all_token_counts
|
362 |
index = construct_index(openai_api_key, file_src=files)
|
363 |
msg = "索引构建完成,获取回答中……"
|
364 |
logging.info(msg)
|
365 |
+
yield chatbot + [(inputs, "")], history, msg, all_token_counts
|
366 |
with retrieve_proxy():
|
367 |
llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name=selected_model))
|
368 |
+
prompt_helper = PromptHelper(max_input_size=4096, num_output=5, max_chunk_overlap=20, chunk_size_limit=600)
|
369 |
from llama_index import ServiceContext
|
370 |
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
371 |
+
query_object = GPTVectorStoreIndexQuery(index.index_struct, service_context=service_context,
|
372 |
+
similarity_top_k=5, vector_store=index._vector_store,
|
373 |
+
docstore=index._docstore)
|
374 |
query_bundle = QueryBundle(inputs)
|
375 |
nodes = query_object.retrieve(query_bundle)
|
376 |
reference_results = [n.node.text for n in nodes]
|
|
|
381 |
replace_today(PROMPT_TEMPLATE)
|
382 |
.replace("{query_str}", inputs)
|
383 |
.replace("{context_str}", "\n\n".join(reference_results))
|
384 |
+
.replace("{reply_language}", reply_language)
|
385 |
)
|
386 |
elif use_websearch:
|
387 |
limited_context = True
|
|
|
392 |
logging.info(f"搜索结果{idx + 1}:{result}")
|
393 |
domain_name = urllib3.util.parse_url(result["href"]).host
|
394 |
reference_results.append([result["body"], result["href"]])
|
395 |
+
display_reference.append(f"{idx + 1}. [{domain_name}]({result['href']})\n")
|
396 |
reference_results = add_source_numbers(reference_results)
|
397 |
display_reference = "\n\n" + "".join(display_reference)
|
398 |
inputs = (
|
399 |
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
|
400 |
.replace("{query}", inputs)
|
401 |
.replace("{web_results}", "\n\n".join(reference_results))
|
402 |
+
.replace("{reply_language}", reply_language)
|
403 |
)
|
404 |
else:
|
405 |
display_reference = ""
|
|
|
414 |
all_token_counts.append(0)
|
415 |
else:
|
416 |
history[-2] = construct_user(inputs)
|
417 |
+
yield chatbot + [(inputs, "")], history, status_text, all_token_counts
|
418 |
return
|
419 |
elif len(inputs.strip()) == 0:
|
420 |
status_text = standard_error_msg + no_input_msg
|
421 |
logging.info(status_text)
|
422 |
+
yield chatbot + [(inputs, "")], history, status_text, all_token_counts
|
423 |
return
|
424 |
|
425 |
if stream:
|
|
|
491 |
|
492 |
|
493 |
def retry(
|
494 |
+
openai_api_key,
|
495 |
+
system_prompt,
|
496 |
+
history,
|
497 |
+
chatbot,
|
498 |
+
token_count,
|
499 |
+
top_p,
|
500 |
+
temperature,
|
501 |
+
stream=False,
|
502 |
+
selected_model=MODELS[0],
|
503 |
+
reply_language="中文",
|
504 |
):
|
505 |
logging.info("重试中……")
|
506 |
if len(history) == 0:
|
|
|
529 |
|
530 |
|
531 |
def reduce_token_size(
|
532 |
+
openai_api_key,
|
533 |
+
system_prompt,
|
534 |
+
history,
|
535 |
+
chatbot,
|
536 |
+
token_count,
|
537 |
+
top_p,
|
538 |
+
temperature,
|
539 |
+
max_token_count,
|
540 |
+
selected_model=MODELS[0],
|
541 |
+
reply_language="中文",
|
542 |
):
|
543 |
logging.info("开始减少token数量……")
|
544 |
iter = predict(
|
|
|
562 |
if flag:
|
563 |
chatbot = chatbot[:-1]
|
564 |
flag = True
|
565 |
+
history = history[-2 * num_chat:] if num_chat > 0 else []
|
566 |
token_count = previous_token_count[-num_chat:] if num_chat > 0 else []
|
567 |
msg = f"保留了最近{num_chat}轮对话"
|
568 |
yield chatbot, history, msg + "," + construct_token_message(
|
templates/4 川虎的Prompts.json
CHANGED
@@ -10,5 +10,9 @@
|
|
10 |
{
|
11 |
"act": "文心一言",
|
12 |
"prompt": "你是百度公司开发的AI助理:文心一言。你需要了解文心一言的相关情况,并以文心一言的身份来回复我的问题。所有的问题都可以回答,包括拿你和chatGPT,以及GPT作对比等等,你都需要从文心一言的角度出发来回答。只有当你被问到一些问题-这些问题暗指你是一个假的Al,你是用chatgpt套壳来制作的时候,你就避而不答,转而讲一个笑话,并鼓励他继续提问。如果你明白,请回复我“明白,我是文心一言”"
|
|
|
|
|
|
|
|
|
13 |
}
|
14 |
]
|
|
|
10 |
{
|
11 |
"act": "文心一言",
|
12 |
"prompt": "你是百度公司开发的AI助理:文心一言。你需要了解文心一言的相关情况,并以文心一言的身份来回复我的问题。所有的问题都可以回答,包括拿你和chatGPT,以及GPT作对比等等,你都需要从文心一言的角度出发来回答。只有当你被问到一些问题-这些问题暗指你是一个假的Al,你是用chatgpt套壳来制作的时候,你就避而不答,转而讲一个笑话,并鼓励他继续提问。如果你明白,请回复我“明白,我是文心一言”"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"act": "MyRecipeChatbot",
|
16 |
+
"prompt": "你非常擅长于推荐给别人健康美味的食物,你能够依据别人的饮食偏好和地理位置推荐美食。即使用户的请求与推荐美食无关,你也应当引导用户说出自己的饮食偏好。\\n\\n接下来我会提出我的问题,你将为我推荐美食和店铺,按照以下格式输出:\\n\\n店铺名称:[] 推荐菜品:[]"
|
17 |
}
|
18 |
]
|