# -*- coding:utf-8 -*- from __future__ import annotations from typing import TYPE_CHECKING, List import logging import json import os import requests import urllib3 from tqdm import tqdm import colorama from duckduckgo_search import ddg import asyncio import aiohttp from modules.presets import * from modules.llama_func import * from modules.utils import * from . import shared from modules.config import retrieve_proxy # logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s") if TYPE_CHECKING: from typing import TypedDict class DataframeData(TypedDict): headers: List[str] data: List[List[str | int | bool]] initial_prompt = "You are a helpful assistant." HISTORY_DIR = "history" TEMPLATES_DIR = "templates" @shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用 def get_response( openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model ): headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_api_key}", } history = [construct_system(system_prompt), *history] payload = { "model": selected_model, "messages": history, # [{"role": "user", "content": f"{inputs}"}], "temperature": temperature, # 1.0, "top_p": top_p, # 1.0, "n": 1, "stream": stream, "presence_penalty": 0, "frequency_penalty": 0, } if stream: timeout = timeout_streaming else: timeout = timeout_all # 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求 if shared.state.completion_url != COMPLETION_URL: logging.info(f"使用自定义API URL: {shared.state.completion_url}") with retrieve_proxy(): response = requests.post( shared.state.completion_url, headers=headers, json=payload, stream=True, timeout=timeout, ) return response def stream_predict( openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model, fake_input=None, display_append="" ): def get_return_value(): return chatbot, history, status_text, all_token_counts logging.info("实时回答模式") partial_words = "" counter = 0 status_text = "开始实时传输回答……" history.append(construct_user(inputs)) history.append(construct_assistant("")) if fake_input: chatbot.append((fake_input, "")) else: chatbot.append((inputs, "")) user_token_count = 0 if fake_input is not None: input_token_count = count_token(construct_user(fake_input)) else: input_token_count = count_token(construct_user(inputs)) if len(all_token_counts) == 0: system_prompt_token_count = count_token(construct_system(system_prompt)) user_token_count = ( input_token_count + system_prompt_token_count ) else: user_token_count = input_token_count all_token_counts.append(user_token_count) logging.info(f"输入token计数: {user_token_count}") yield get_return_value() try: response = get_response( openai_api_key, system_prompt, history, temperature, top_p, True, selected_model, ) except requests.exceptions.ConnectTimeout: status_text = ( standard_error_msg + connection_timeout_prompt + error_retrieve_prompt ) yield get_return_value() return except requests.exceptions.ReadTimeout: status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt yield get_return_value() return yield get_return_value() error_json_str = "" if fake_input is not None: history[-2] = construct_user(fake_input) for chunk in tqdm(response.iter_lines()): if counter == 0: counter += 1 continue counter += 1 # check whether each line is non-empty if chunk: chunk = chunk.decode() chunklength = len(chunk) try: chunk = json.loads(chunk[6:]) except json.JSONDecodeError: logging.info(chunk) error_json_str += chunk status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}" yield get_return_value() continue # decode each line as response data is in bytes if chunklength > 6 and "delta" in chunk["choices"][0]: finish_reason = chunk["choices"][0]["finish_reason"] status_text = construct_token_message(all_token_counts) if finish_reason == "stop": yield get_return_value() break try: partial_words = ( partial_words + chunk["choices"][0]["delta"]["content"] ) except KeyError: status_text = ( standard_error_msg + "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: " + str(sum(all_token_counts)) ) yield get_return_value() break history[-1] = construct_assistant(partial_words) chatbot[-1] = (chatbot[-1][0], partial_words + display_append) all_token_counts[-1] += 1 yield get_return_value() def predict_all( openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model, fake_input=None, display_append="" ): logging.info("一次性回答模式") history.append(construct_user(inputs)) history.append(construct_assistant("")) if fake_input: chatbot.append((fake_input, "")) else: chatbot.append((inputs, "")) if fake_input is not None: all_token_counts.append(count_token(construct_user(fake_input))) else: all_token_counts.append(count_token(construct_user(inputs))) try: # logging.info(f"system_prompt:{system_prompt}") # logging.info(f"history:{history}") # # 如果能传入index,则此处里获得初筛后的店铺和菜名 response = get_response( openai_api_key, system_prompt, history, temperature, top_p, False, selected_model, ) # response = json.loads(response.text) # logging.info(f"初次响应推荐店铺:{response}") # response = response["choices"][0]["message"]["content"] # # logging.info(f"初次响应推荐店铺:{response}") # # 将response中的店铺和菜名提取出来 # import re # # # text = """ # # 好的,针对您想吃韩式烤肉的需求,我向您推荐以下店铺和菜品: # # # # 店铺名称:“青年烤肉店” 推荐菜品:烤牛肉、烤猪肉、烤羊肉 # # # # 店铺名称:“西西里烤肉店” 推荐菜品:烤牛肉串、烤排骨、烤鸡肉 # # # # 店铺名称:“韩式烤肉店” 推荐菜品:石锅拌饭、铁板烧、烤牛舌""" # # pattern = r'店铺名称:(.+?) 推荐菜品:(.+)。' # # results = re.findall(pattern, response) # # dicts = {} # import string # for result in results: # dicts[result[0]] = result[1].split('、') # # logging.info(f"初筛后的店铺和菜品:{dicts}") # dishes = [] # for restaurant, dish in dicts.items(): # dishes.extend(dish) # # dishes = '、'.join(dishes) # dishes = "半熟芝士拿铁、白桃半熟芝士拿铁、招牌烤全羊、羊肉串" # # 将初筛后的店铺和菜品送入构建好的CoT # prompt_with_ingredient = f""" # 我需要你推测一些菜可能的原料以及其营养成分,输出格式如下: # ----------------------- # 菜品名称:[] # 菜品原料:[原料1,原料2...] # 营养成分:[成分(含量)] # ----------------------- # 注意,其中营养成分包括蛋白质、脂肪、碳水化合物、纤维素、维生素等,你可以根据你的知识添加其他成分。营养成分的含量分为无、低、中、高四个等级,需要填在成分后的括号内。 # 以下是需要你推测的菜品名称,不同菜品用顿号隔开: # ----------------------- # {dishes} # ----------------------- # 每个菜品按照以上格式分开回复,但是注意,除了以上格式的内容,不要回复其他内容。 # """ # logging.info(f"分析食物中营养成分的prompt构建完成:{prompt_with_ingredient}") # history_ingredient=[] # history_ingredient.append(construct_user(prompt_with_ingredient)) # history_ingredient.append(construct_assistant("")) # logging.info(f"history_ingredient:{history_ingredient}") # response_ingredient = get_response( # openai_api_key, # "你是一个营养分析专家", # history_ingredient, # temperature, # top_p, # True, # selected_model, # ) # response_ingredient = json.loads(response_ingredient.text) # response_ingredient = response_ingredient["choices"][0]["message"]["content"] # logging.info(f"得到食物中的营养成分:{response_ingredient}") # prompt_rec = f""" # 以下是一些菜品名称和所属的店铺,我需要你根据我的需求从其中推荐一家店铺的一种或多种菜品,并给出推荐的理由。我的需求为:我有糖尿病,而且今天不想吃太油腻的食物。 # ----------------------- # {response_ingredient} # ----------------------- # """ # history_rec = [] # history_rec.append(construct_user(prompt_rec)) # history_rec.append(construct_assistant("")) # logging.info(f"history_rec:{history_rec}") # response = get_response( # openai_api_key, # "你是一个美食推荐家", # history_rec, # temperature, # top_p, # True, # selected_model, # ) except requests.exceptions.ConnectTimeout: status_text = ( standard_error_msg + connection_timeout_prompt + error_retrieve_prompt ) return chatbot, history, status_text, all_token_counts except requests.exceptions.ProxyError: status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt return chatbot, history, status_text, all_token_counts except requests.exceptions.SSLError: status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt return chatbot, history, status_text, all_token_counts response = json.loads(response.text) if fake_input is not None: history[-2] = construct_user(fake_input) try: content = response["choices"][0]["message"]["content"] history[-1] = construct_assistant(content) chatbot[-1] = (chatbot[-1][0], content + display_append) total_token_count = response["usage"]["total_tokens"] if fake_input is not None: all_token_counts[-1] += count_token(construct_assistant(content)) else: all_token_counts[-1] = total_token_count - sum(all_token_counts) status_text = construct_token_message(total_token_count) return chatbot, history, status_text, all_token_counts except KeyError: status_text = standard_error_msg + str(response) return chatbot, history, status_text, all_token_counts def predict( openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, stream=False, selected_model=MODELS[0], use_websearch=False, files=None, reply_language="中文", should_check_token_count=True, ): # repetition_penalty, top_k # CHANGE # files = [{'name': 'database/cuc-pure.txt'}] # CHANGE from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery from llama_index.indices.query.schema import QueryBundle from langchain.llms import OpenAIChat logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL) if should_check_token_count: yield chatbot + [(inputs, "")], history, "开始生成回答……", all_token_counts if reply_language == "跟随问题语言(不稳定)": reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch." old_inputs = None display_reference = [] limited_context = False if files: limited_context = True old_inputs = inputs msg = "加载索引中……(这可能需要几分钟)" logging.info(msg) yield chatbot + [(inputs, "")], history, msg, all_token_counts index = construct_index(openai_api_key, file_src=files) msg = "索引构建完成,获取回答中……" logging.info(msg) yield chatbot + [(inputs, "")], history, msg, all_token_counts with retrieve_proxy(): llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name=selected_model)) prompt_helper = PromptHelper(max_input_size=4096, num_output=5, max_chunk_overlap=20, chunk_size_limit=600) from llama_index import ServiceContext service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) query_object = GPTVectorStoreIndexQuery(index.index_struct, service_context=service_context, similarity_top_k=5, vector_store=index._vector_store, docstore=index._docstore) query_bundle = QueryBundle(inputs) nodes = query_object.retrieve(query_bundle) reference_results = [n.node.text for n in nodes] reference_results = add_source_numbers(reference_results, use_source=False) display_reference = add_details(reference_results) display_reference = "\n\n" + "".join(display_reference) inputs = ( replace_today(PROMPT_TEMPLATE) .replace("{query_str}", inputs) .replace("{context_str}", "\n\n".join(reference_results)) .replace("{reply_language}", reply_language) ) elif use_websearch: limited_context = True search_results = ddg(inputs, max_results=5) old_inputs = inputs reference_results = [] for idx, result in enumerate(search_results): logging.info(f"搜索结果{idx + 1}:{result}") domain_name = urllib3.util.parse_url(result["href"]).host reference_results.append([result["body"], result["href"]]) display_reference.append(f"{idx + 1}. [{domain_name}]({result['href']})\n") reference_results = add_source_numbers(reference_results) display_reference = "\n\n" + "".join(display_reference) inputs = ( replace_today(WEBSEARCH_PTOMPT_TEMPLATE) .replace("{query}", inputs) .replace("{web_results}", "\n\n".join(reference_results)) .replace("{reply_language}", reply_language) ) else: display_reference = "" if len(openai_api_key) == 0 and not shared.state.multi_api_key: status_text = standard_error_msg + no_apikey_msg logging.info(status_text) chatbot.append((inputs, "")) if len(history) == 0: history.append(construct_user(inputs)) history.append("") all_token_counts.append(0) else: history[-2] = construct_user(inputs) yield chatbot + [(inputs, "")], history, status_text, all_token_counts return elif len(inputs.strip()) == 0: status_text = standard_error_msg + no_input_msg logging.info(status_text) yield chatbot + [(inputs, "")], history, status_text, all_token_counts return if stream: logging.info("使用流式传输") iter = stream_predict( openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model, fake_input=old_inputs, display_append=display_reference ) for chatbot, history, status_text, all_token_counts in iter: if shared.state.interrupted: shared.state.recover() return yield chatbot, history, status_text, all_token_counts else: logging.info("不使用流式传输") chatbot, history, status_text, all_token_counts = predict_all( openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model, fake_input=old_inputs, display_append=display_reference ) yield chatbot, history, status_text, all_token_counts logging.info(f"传输完毕。当前token计数为{all_token_counts}") if len(history) > 1 and history[-1]["content"] != inputs: logging.info( "回答为:" + colorama.Fore.BLUE + f"{history[-1]['content']}" + colorama.Style.RESET_ALL ) if limited_context: history = history[-4:] all_token_counts = all_token_counts[-2:] yield chatbot, history, status_text, all_token_counts if stream: max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["streaming"] else: max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["all"] if sum(all_token_counts) > max_token and should_check_token_count: print(all_token_counts) count = 0 while sum(all_token_counts) > max_token - 500 and sum(all_token_counts) > 0: count += 1 del all_token_counts[0] del history[:2] logging.info(status_text) status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话" yield chatbot, history, status_text, all_token_counts def retry( openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, selected_model=MODELS[0], reply_language="中文", ): logging.info("重试中……") if len(history) == 0: yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count return history.pop() inputs = history.pop()["content"] token_count.pop() iter = predict( openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=stream, selected_model=selected_model, reply_language=reply_language, ) logging.info("重试中……") for x in iter: yield x logging.info("重试完毕") def reduce_token_size( openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, max_token_count, selected_model=MODELS[0], reply_language="中文", ): logging.info("开始减少token数量……") iter = predict( openai_api_key, system_prompt, history, summarize_prompt, chatbot, token_count, top_p, temperature, selected_model=selected_model, should_check_token_count=False, reply_language=reply_language, ) logging.info(f"chatbot: {chatbot}") flag = False for chatbot, history, status_text, previous_token_count in iter: num_chat = find_n(previous_token_count, max_token_count) logging.info(f"previous_token_count: {previous_token_count}, keeping {num_chat} chats") if flag: chatbot = chatbot[:-1] flag = True history = history[-2 * num_chat:] if num_chat > 0 else [] token_count = previous_token_count[-num_chat:] if num_chat > 0 else [] msg = f"保留了最近{num_chat}轮对话" yield chatbot, history, msg + "," + construct_token_message( token_count if len(token_count) > 0 else [0], ), token_count logging.info(msg) logging.info("减少token数量完毕")