Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
from requests import head
|
3 |
from transformer_vectorizer import TransformerVectorizer
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
-
|
6 |
from concrete.ml.deployment import FHEModelClient
|
7 |
import numpy
|
8 |
import os
|
@@ -110,11 +110,11 @@ def encode_quantize_encrypt(text, user_id):
|
|
110 |
encodings =vectorizer.fit_transform([text]).toarray()
|
111 |
if encodings.shape[1] < 1736:
|
112 |
# ε¨ει’ε‘«ε
ιΆ
|
113 |
-
padding = np.zeros((1, 1736 -
|
114 |
-
encodings = np.hstack((
|
115 |
elif encodings.shape[1] > 1736:
|
116 |
# ζͺεε1736ε
|
117 |
-
encodings =
|
118 |
else:
|
119 |
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
|
120 |
encodings = transformer_vectorizer.transform([text])
|
|
|
2 |
from requests import head
|
3 |
from transformer_vectorizer import TransformerVectorizer
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
import numpy as np
|
6 |
from concrete.ml.deployment import FHEModelClient
|
7 |
import numpy
|
8 |
import os
|
|
|
110 |
encodings =vectorizer.fit_transform([text]).toarray()
|
111 |
if encodings.shape[1] < 1736:
|
112 |
# ε¨ει’ε‘«ε
ιΆ
|
113 |
+
padding = np.zeros((1, 1736 - encodings.shape[1]))
|
114 |
+
encodings = np.hstack((encodings, padding))
|
115 |
elif encodings.shape[1] > 1736:
|
116 |
# ζͺεε1736ε
|
117 |
+
encodings = encodings[:, :1736]
|
118 |
else:
|
119 |
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
|
120 |
encodings = transformer_vectorizer.transform([text])
|