HyenaPixel / app.py
Spravil's picture
Update app.py
e0809f6 verified
import gradio as gr
import timm
import hyenapixel.models
import torch
import numpy as np
from PIL import Image
with open("imagenet.txt") as file:
class_names = [line.rstrip() for line in file]
def predict(model_name, image):
model = timm.create_model(model_name, pretrained=True)
model.eval()
image_size = 224
if "_384" in model_name:
image_size = 384
transform = timm.data.create_transform(image_size)
input_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
output = model(input_tensor)
output_np = torch.softmax(output, dim=1)[0].numpy()
return {clsname: prob for clsname, prob in zip(class_names, output_np)}
interface = gr.Interface(
fn=predict,
inputs=[
gr.Dropdown(label="Select Model", value="hb_former_b36", choices=["hpx_former_s18", "hpx_former_s18_384", "hb_former_s18", "c_hpx_former_s18", "hpx_a_former_s18", "hb_a_former_s18", "hpx_former_b36", "hb_former_b36"]),
gr.Image(type="pil", label="Upload Image")
],
outputs=gr.Label(label="Prediction", num_top_classes=10),
title="Image Classification",
description="Choose a model and upload an image to predict the class."
)
interface.launch()