Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,9 +18,8 @@ def predict(model_name, image):
|
|
18 |
input_tensor = transform(image).unsqueeze(0)
|
19 |
with torch.no_grad():
|
20 |
output = model(input_tensor)
|
21 |
-
output_np = output[0].numpy()
|
22 |
-
|
23 |
-
return class_names[class_ind]
|
24 |
|
25 |
interface = gr.Interface(
|
26 |
fn=predict,
|
@@ -28,7 +27,7 @@ interface = gr.Interface(
|
|
28 |
gr.Dropdown(label="Select Model", value="hb_former_b36", choices=["hpx_former_s18", "hpx_former_s18_384", "hb_former_s18", "c_hpx_former_s18", "hpx_a_former_s18", "hb_a_former_s18", "hpx_former_b36", "hb_former_b36"]),
|
29 |
gr.Image(type="pil", label="Upload Image")
|
30 |
],
|
31 |
-
outputs=gr.
|
32 |
title="Image Classification",
|
33 |
description="Choose a model and upload an image to predict the class."
|
34 |
)
|
|
|
18 |
input_tensor = transform(image).unsqueeze(0)
|
19 |
with torch.no_grad():
|
20 |
output = model(input_tensor)
|
21 |
+
output_np = torch.softmax(output)[0].numpy()
|
22 |
+
return {clsname: prob for clsname, prob in zip(class_names, output_np)}
|
|
|
23 |
|
24 |
interface = gr.Interface(
|
25 |
fn=predict,
|
|
|
27 |
gr.Dropdown(label="Select Model", value="hb_former_b36", choices=["hpx_former_s18", "hpx_former_s18_384", "hb_former_s18", "c_hpx_former_s18", "hpx_a_former_s18", "hb_a_former_s18", "hpx_former_b36", "hb_former_b36"]),
|
28 |
gr.Image(type="pil", label="Upload Image")
|
29 |
],
|
30 |
+
outputs=gr.Label(label="Prediction", num_top_classes=10),
|
31 |
title="Image Classification",
|
32 |
description="Choose a model and upload an image to predict the class."
|
33 |
)
|