File size: 10,042 Bytes
fb3b924
 
 
 
 
 
 
 
 
 
 
 
fec983f
 
 
 
 
 
 
fb3b924
fec983f
 
 
fb3b924
fec983f
fb3b924
 
fec983f
fb3b924
fec983f
fb3b924
 
fec983f
 
fb3b924
fec983f
 
fb3b924
fec983f
fb3b924
 
fec983f
 
fb3b924
fec983f
fb3b924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fec983f
 
fb3b924
 
 
 
 
 
 
 
 
fec983f
fb3b924
 
 
 
 
fec983f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3b924
fec983f
 
 
 
 
 
 
 
 
 
 
 
fb3b924
 
fec983f
 
 
 
 
 
 
 
fb3b924
 
fec983f
 
 
fb3b924
 
 
 
 
fec983f
fb3b924
fec983f
 
095fad4
fb3b924
095fad4
fb3b924
 
 
 
 
 
 
 
 
095fad4
fb3b924
095fad4
fb3b924
095fad4
fb3b924
 
 
 
fec983f
 
 
 
fb3b924
 
 
fec983f
fb3b924
 
fec983f
d2fc390
fec983f
fb3b924
 
fec983f
fb3b924
 
fec983f
 
fb3b924
fec983f
fb3b924
fec983f
 
 
fb3b924
fec983f
00d44a4
fb3b924
b91ad3a
fec983f
 
 
fb3b924
fec983f
00d44a4
fb3b924
fec983f
 
fb3b924
fec983f
 
fb3b924
fec983f
f35882a
fb3b924
979bd80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import re
import json
import requests
import pandas as pd
from tqdm import tqdm
from bs4 import BeautifulSoup
from huggingface_hub import HfApi, list_models, list_datasets, list_spaces
import gradio as gr

api = HfApi()

def get_models(org_name, which_one):
  all_list = []
  if which_one == "models":
    things = api.list_models(author=org_name)
  elif which_one == "datasets":
    things = api.list_datasets(author=org_name)
  elif which_one == "spaces":
     things = api.list_spaces(author=org_name)

  for i in things:
    i = i.__dict__
    json_format_data = {"id": i['id'], "downloads": i['downloads'], "likes": i['likes']} if which_one != "spaces" else {"id": i['id'], "downloads": 0, "likes": i['likes']}

    all_list.append(json_format_data)


  df_all_list = (pd.DataFrame(all_list))

  return df_all_list

def get_most(df_for_most_function):
  download_sorted_df = df_for_most_function.sort_values(by=['downloads'], ascending=False)
  most_downloaded = download_sorted_df.iloc[0]

  like_sorted_df = df_for_most_function.sort_values(by=['likes'], ascending=False)
  most_liked = like_sorted_df.iloc[0]

  return {"Most Download": {"id": most_downloaded['id'], "downloads": most_downloaded['downloads'], "likes": most_downloaded['likes']}, "Most Likes": {"id": most_liked['id'], "downloads": most_liked['downloads'], "likes": most_liked['likes']}}

def get_sum(df_for_sum_function):
  sum_downloads = sum(df_for_sum_function['downloads'].tolist())
  sum_likes = sum(df_for_sum_function['likes'].tolist())

  return {"Downloads": sum_downloads, "Likes": sum_likes}

def get_openllm_leaderboard():
    url = 'https://huggingfaceh4-open-llm-leaderboard.hf.space/'
    response = requests.get(url)
    soup = BeautifulSoup(response.content, 'html.parser')
    script_elements = soup.find_all('script')
    data = json.loads(str(script_elements[1])[31:-10])

    component_index = 11
    pattern = r'href="([^"]*)"'
    zero_or_one = 1

    result_list = []
    i = 0
    while True:
        try:
            unfiltered = data['components'][component_index]['props']['value']['data'][i][zero_or_one].rstrip("\n")
            normal_name = re.search(pattern, unfiltered).group(1)
            normal_name = "/".join(normal_name.split("/")[-2:])
            result_list.append(normal_name)
            i += 1
        except (IndexError, AttributeError):
            return result_list

def get_ranking(model_list, target_org):
    for index, model in enumerate(model_list):
      if model.split("/")[0].lower() == target_org.lower():
          return [index+1, model]
    return "Not Found"

def make_leaderboard(orgs, which_one):
    data_rows = []
    open_llm_leaderboard = get_openllm_leaderboard() if which_one == "models" else None

    for org in tqdm(orgs, desc=f"Scraping Organizations ({which_one})", position=0, leave=True):
        df = get_models(org, which_one)
        if len(df) == 0:
          continue
        num_things = len(df)
        sum_info = get_sum(df)
        most_info = get_most(df)

        if which_one == "models":
          open_llm_leaderboard_get_org = get_ranking(open_llm_leaderboard, org)
          data_rows.append({
              "Organization Name": org,
              "Total Downloads": sum_info["Downloads"],
              "Total Likes": sum_info["Likes"],
              "Number of Models": num_things,
              "Best Model On Open LLM Leaderboard": open_llm_leaderboard_get_org[1] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org,
              "Best Rank On Open LLM Leaderboard": open_llm_leaderboard_get_org[0] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org,
              "Average Downloads per Model": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
              "Average Likes per Model": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
              "Most Downloaded Model": most_info["Most Download"]["id"],
              "Most Download Count": most_info["Most Download"]["downloads"],
              "Most Liked Model": most_info["Most Likes"]["id"],
              "Most Like Count": most_info["Most Likes"]["likes"]
          })
        elif which_one == "datasets":
          data_rows.append({
              "Organization Name": org,
              "Total Downloads": sum_info["Downloads"],
              "Total Likes": sum_info["Likes"],
              "Number of Datasets": num_things,
              "Average Downloads per Dataset": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
              "Average Likes per Dataset": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
              "Most Downloaded Dataset": most_info["Most Download"]["id"],
              "Most Download Count": most_info["Most Download"]["downloads"],
              "Most Liked Dataset": most_info["Most Likes"]["id"],
              "Most Like Count": most_info["Most Likes"]["likes"]
          })

        elif which_one == "spaces":
          data_rows.append({
              "Organization Name": org,
              "Total Likes": sum_info["Likes"],
              "Number of Spaces": num_things,
              "Average Likes per Space": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
              "Most Liked Space": most_info["Most Likes"]["id"],
              "Most Like Count": most_info["Most Likes"]["likes"]
          })

    leaderboard = pd.DataFrame(data_rows)
    temp = ["Total Downloads"] if which_one != "spaces" else ["Total Likes"]

    leaderboard = leaderboard.sort_values(by=temp, ascending=False)
    leaderboard.insert(0, "Serial Number", range(1, len(leaderboard) + 1))
    return leaderboard


with open("org_names.txt", "r") as f:
  org_names_in_list = [i.rstrip("\n") for i in f.readlines()]


INTRODUCTION_TEXT = f"""
🎯 The Organization Leaderboard aims to track organization rankings. This space is inspired by the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).

## Available Dataframes:

- 🏛️ Models

- 📊 Datasets

- 🚀 Spaces

## Backend

🛠️ The leaderboard's backend mainly runs on the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api).

🛠️ Organization names are retrieved using web scraping from [Huggingface Organizations](https://huggingface.co/organizations).

**🌐 Note:** In the model's dataframe, there are some columns related to the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This data is also retrieved through web scraping.
"""

def clickable(x, which_one):
    if which_one == "models":
      if x != "Not Found":
          return f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
      else:
          return "Not Found"
    else:
        return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'

def models_df_to_clickable(df, columns, which_one):
    for column in columns:
        if column == "Organization Name":
          df[column] = df[column].apply(lambda x: clickable(x, "models"))
        else:
          df[column] = df[column].apply(lambda x: clickable(x, which_one))
    return df

demo = gr.Blocks()

with gr.Blocks() as demo:
      gr.Markdown("""<h1 align="center" id="space-title">🤗 Organization Leaderboard</h1>""")
      gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

      with gr.TabItem("🏛️ Models", id=1):

          columns_to_convert = ["Organization Name", "Best Model On Open LLM Leaderboard", "Most Downloaded Model", "Most Liked Model"]
          models_df = make_leaderboard(org_names_in_list, "models")
          models_df = models_df_to_clickable(models_df, columns_to_convert, "models")

          headers = ["🔢 Serial Number", "🏢 Organization Name", "📥 Total Downloads", "👍 Total Likes", "🤖 Number of Models", "🏆 Best Model On Open LLM Leaderboard", "🥇 Best Rank On Open LLM Leaderboard", "📊 Average Downloads per Model", "📈 Average Likes per Model", "🚀 Most Downloaded Model", "📈 Most Download Count", "❤️ Most Liked Model", "👍 Most Like Count"]
          gr.Dataframe(models_df.head(400), headers=headers, interactive=True, datatype=["str", "markdown", "str", "str", "str", "markdown", "str", "str", "str", "markdown", "str", "markdown", "str"])

      with gr.TabItem("📊 Datasets", id=2):
          columns_to_convert = ["Organization Name", "Most Downloaded Dataset", "Most Liked Dataset"]
          dataset_df = make_leaderboard(org_names_in_list, "datasets")
          dataset_df = models_df_to_clickable(dataset_df, columns_to_convert, "datasets")

          headers = ["🔢 Serial Number", "🏢 Organization Name", "📥 Total Downloads", "👍 Total Likes", "📊 Number of Datasets", "📊 Average Downloads per Dataset", "📈 Average Likes per Dataset", "🚀 Most Downloaded Dataset", "📈 Most Download Count", "❤️ Most Liked Dataset", "👍 Most Like Count"]
          gr.Dataframe(dataset_df.head(250), headers=headers, interactive=False, datatype=["str", "markdown", "str", "str", "str", "str", "str", "markdown", "str", "markdown", "str"])

      with gr.TabItem("🚀 Spaces", id=3):
          columns_to_convert = ["Organization Name", "Most Liked Space"]

          spaces_df = make_leaderboard(org_names_in_list, "spaces")
          spaces_df = models_df_to_clickable(spaces_df, columns_to_convert, "spaces")

          headers = ["🔢 Serial Number", "🏢 Organization Name", "👍 Total Likes", "🚀 Number of Spaces", "📈 Average Likes per Space", "❤️ Most Liked Space", "👍 Most Like Count"]
          gr.Dataframe(spaces_df.head(150), headers=headers, interactive=False,  datatype=["str", "markdown", "str", "str", "str", "markdown", "str"])

demo.launch()