|
import os |
|
from huggingface_hub import CommitOperationAdd, create_commit, RepoUrl |
|
from huggingface_hub import EvalResult, ModelCard |
|
from huggingface_hub.repocard_data import eval_results_to_model_index |
|
import time |
|
from pytablewriter import MarkdownTableWriter |
|
import gradio as gr |
|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
def get_datas(): |
|
return pd.read_parquet("https://huggingface.co/datasets/open-llm-leaderboard/contents/resolve/main/data/train-00000-of-00001.parquet").sort_values(by="Average ⬆️", ascending=False) |
|
|
|
BOT_HF_TOKEN = os.getenv('BOT_HF_TOKEN') |
|
|
|
df = get_datas() |
|
|
|
desc = """ |
|
This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr |
|
|
|
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card. |
|
|
|
If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions |
|
""" |
|
|
|
def search(df, value): |
|
result_df = df[df["fullname"] == value] |
|
return result_df.iloc[0].to_dict() if not result_df.empty else None |
|
|
|
|
|
def get_details_url(repo): |
|
author, model = repo.split("/") |
|
return f"https://huggingface.co/datasets/open-llm-leaderboard/{author}__{model}-details" |
|
|
|
|
|
def get_query_url(repo): |
|
return f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query={repo}" |
|
|
|
|
|
def get_task_summary(results): |
|
return { |
|
"IFEval": |
|
{"dataset_type":"HuggingFaceH4/ifeval", |
|
"dataset_name":"IFEval (0-Shot)", |
|
"metric_type": "inst_level_strict_acc and prompt_level_strict_acc", |
|
"metric_value": round(results["IFEval"], 2), |
|
"dataset_config": None, |
|
"dataset_split": None, |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 0}, |
|
"metric_name":"strict accuracy" |
|
}, |
|
"BBH": |
|
{"dataset_type":"BBH", |
|
"dataset_name":"BBH (3-Shot)", |
|
"metric_type":"acc_norm", |
|
"metric_value": round(results["BBH"], 2), |
|
"dataset_config": None, |
|
"dataset_split": None, |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 3}, |
|
"metric_name":"normalized accuracy" |
|
}, |
|
"MATH Lvl 5": |
|
{ |
|
"dataset_type":"hendrycks/competition_math", |
|
"dataset_name":"MATH Lvl 5 (4-Shot)", |
|
"metric_type":"exact_match", |
|
"metric_value": round(results["MATH Lvl 5"], 2), |
|
"dataset_config": None, |
|
"dataset_split": None, |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 4}, |
|
"metric_name":"exact match" |
|
}, |
|
"GPQA": |
|
{ |
|
"dataset_type":"Idavidrein/gpqa", |
|
"dataset_name":"GPQA (0-shot)", |
|
"metric_type":"acc_norm", |
|
"metric_value": round(results["GPQA"], 2), |
|
"dataset_config": None, |
|
"dataset_split": None, |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 0}, |
|
"metric_name":"acc_norm" |
|
}, |
|
"MuSR": |
|
{ |
|
"dataset_type":"TAUR-Lab/MuSR", |
|
"dataset_name":"MuSR (0-shot)", |
|
"metric_type":"acc_norm", |
|
"metric_value": round(results["MUSR"], 2), |
|
"dataset_config": None, |
|
"dataset_split": None, |
|
"dataset_args":{"num_few_shot": 0}, |
|
"metric_name":"acc_norm" |
|
}, |
|
"MMLU-PRO": |
|
{ |
|
"dataset_type":"TIGER-Lab/MMLU-Pro", |
|
"dataset_name":"MMLU-PRO (5-shot)", |
|
"metric_type":"acc", |
|
"metric_value": round(results["MMLU-PRO"], 2), |
|
"dataset_config":"main", |
|
"dataset_split":"test", |
|
"dataset_args":{"num_few_shot": 5}, |
|
"metric_name":"accuracy" |
|
} |
|
} |
|
|
|
|
|
|
|
def get_eval_results(repo): |
|
results = search(df, repo) |
|
task_summary = get_task_summary(results) |
|
md_writer = MarkdownTableWriter() |
|
md_writer.headers = ["Metric", "Value"] |
|
md_writer.value_matrix = [["Avg.", round(results['Average ⬆️'], 2)]] + [[v["dataset_name"], v["metric_value"]] for v in task_summary.values()] |
|
|
|
|
|
text = f""" |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here]({get_details_url(repo)}) |
|
|
|
{md_writer.dumps()} |
|
""" |
|
return text |
|
|
|
|
|
def get_edited_yaml_readme(repo, token: str | None): |
|
card = ModelCard.load(repo, token=token) |
|
results = search(df, repo) |
|
|
|
common = {"task_type": 'text-generation', "task_name": 'Text Generation', "source_name": "Open LLM Leaderboard", "source_url": f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query={repo}"} |
|
|
|
tasks_results = get_task_summary(results) |
|
|
|
if not card.data['eval_results']: |
|
card.data["model-index"] = eval_results_to_model_index(repo.split('/')[1], [EvalResult(**task, **common) for task in tasks_results.values()]) |
|
else: |
|
for task in tasks_results.values(): |
|
cur_result = EvalResult(**task, **common) |
|
if any(result.is_equal_except_value(cur_result) for result in card.data['eval_results']): |
|
continue |
|
card.data['eval_results'].append(cur_result) |
|
|
|
return str(card) |
|
|
|
|
|
def commit(repo, pr_number=None, message="Adding Evaluation Results", oauth_token: gr.OAuthToken | None = None): |
|
global df |
|
finished_models = get_datas() |
|
df = pd.DataFrame(finished_models) |
|
|
|
if not oauth_token: |
|
raise gr.Warning("You are not logged in. Click on 'Sign in with Huggingface' to log in.") |
|
else: |
|
token = oauth_token |
|
|
|
if repo.startswith("https://huggingface.co/"): |
|
try: |
|
repo = RepoUrl(repo).repo_id |
|
except Exception: |
|
raise gr.Error(f"Not a valid repo id: {str(repo)}") |
|
|
|
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True} |
|
|
|
try: |
|
try: |
|
readme_text = get_edited_yaml_readme(repo, token=token) + get_eval_results(repo) |
|
except Exception as e: |
|
if "Repo card metadata block was not found." in str(e): |
|
readme_text = get_edited_yaml_readme(repo, token=token) |
|
else: |
|
print(f"Something went wrong: {e}") |
|
|
|
liste = [CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=readme_text.encode())] |
|
commit = (create_commit(repo_id=repo, token=token, operations=liste, commit_message=message, commit_description=desc, repo_type="model", **edited).pr_url) |
|
|
|
print(f"Success: {repo}") |
|
|
|
return commit |
|
|
|
except Exception as e: |
|
print(f"Error: {repo}") |
|
|
|
if "Discussions are disabled for this repo" in str(e): |
|
return "Discussions disabled" |
|
elif "Cannot access gated repo" in str(e): |
|
return "Gated repo" |
|
elif "Repository Not Found" in str(e): |
|
return "Repository Not Found" |
|
else: |
|
return e |