Spaces:
Runtime error
Runtime error
Multi-file test
Browse files- app.py +3 -195
- functions.py +189 -0
app.py
CHANGED
@@ -1,19 +1,13 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
os.system("wget https://raw.githubusercontent.com/Weyaxi/scrape-open-llm-leaderboard/main/openllm.py")
|
4 |
-
from huggingface_hub import
|
5 |
-
from huggingface_hub import ModelCardData, EvalResult, ModelCard
|
6 |
-
from huggingface_hub.repocard_data import eval_results_to_model_index
|
7 |
-
from huggingface_hub.repocard import RepoCard
|
8 |
-
from openllm import get_json_format_data, get_datas
|
9 |
-
from tqdm import tqdm
|
10 |
import time
|
11 |
-
import requests
|
12 |
import pandas as pd
|
13 |
-
from pytablewriter import MarkdownTableWriter
|
14 |
import threading
|
15 |
import gradio as gr
|
16 |
from gradio_space_ci import enable_space_ci
|
|
|
17 |
|
18 |
enable_space_ci()
|
19 |
|
@@ -24,200 +18,14 @@ BOT_HF_TOKEN = os.getenv('BOT_HF_TOKEN')
|
|
24 |
api = HfApi()
|
25 |
fs = HfFileSystem()
|
26 |
|
27 |
-
data = get_json_format_data()
|
28 |
-
finished_models = get_datas(data)
|
29 |
-
df = pd.DataFrame(finished_models)
|
30 |
-
|
31 |
-
|
32 |
def refresh(how_much=3600): # default to 1 hour
|
33 |
-
global data, finished_models, df
|
34 |
time.sleep(how_much)
|
35 |
-
|
36 |
try:
|
37 |
-
|
38 |
-
finished_models = get_datas(data)
|
39 |
-
df = pd.DataFrame(finished_models)
|
40 |
except Exception as e:
|
41 |
print(f"Error while scraping leaderboard, trying again... {e}")
|
42 |
refresh(600) # 10 minutes if any error happens
|
43 |
|
44 |
-
|
45 |
-
def search(df, value):
|
46 |
-
result_df = df[df["Model"] == value]
|
47 |
-
return result_df.iloc[0].to_dict() if not result_df.empty else None
|
48 |
-
|
49 |
-
|
50 |
-
def get_details_url(repo):
|
51 |
-
author, model = repo.split("/")
|
52 |
-
return f"https://huggingface.co/datasets/open-llm-leaderboard/details_{author}__{model}"
|
53 |
-
|
54 |
-
|
55 |
-
def get_query_url(repo):
|
56 |
-
return f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query={repo}"
|
57 |
-
|
58 |
-
|
59 |
-
desc = """
|
60 |
-
This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr
|
61 |
-
|
62 |
-
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
|
63 |
-
|
64 |
-
If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions
|
65 |
-
"""
|
66 |
-
|
67 |
-
|
68 |
-
def get_task_summary(results):
|
69 |
-
return {
|
70 |
-
"ARC":
|
71 |
-
{"dataset_type":"ai2_arc",
|
72 |
-
"dataset_name":"AI2 Reasoning Challenge (25-Shot)",
|
73 |
-
"metric_type":"acc_norm",
|
74 |
-
"metric_value":results["ARC"],
|
75 |
-
"dataset_config":"ARC-Challenge",
|
76 |
-
"dataset_split":"test",
|
77 |
-
"dataset_revision":None,
|
78 |
-
"dataset_args":{"num_few_shot": 25},
|
79 |
-
"metric_name":"normalized accuracy"
|
80 |
-
},
|
81 |
-
"HellaSwag":
|
82 |
-
{"dataset_type":"hellaswag",
|
83 |
-
"dataset_name":"HellaSwag (10-Shot)",
|
84 |
-
"metric_type":"acc_norm",
|
85 |
-
"metric_value":results["HellaSwag"],
|
86 |
-
"dataset_config":None,
|
87 |
-
"dataset_split":"validation",
|
88 |
-
"dataset_revision":None,
|
89 |
-
"dataset_args":{"num_few_shot": 10},
|
90 |
-
"metric_name":"normalized accuracy"
|
91 |
-
},
|
92 |
-
"MMLU":
|
93 |
-
{
|
94 |
-
"dataset_type":"cais/mmlu",
|
95 |
-
"dataset_name":"MMLU (5-Shot)",
|
96 |
-
"metric_type":"acc",
|
97 |
-
"metric_value":results["MMLU"],
|
98 |
-
"dataset_config":"all",
|
99 |
-
"dataset_split":"test",
|
100 |
-
"dataset_revision":None,
|
101 |
-
"dataset_args":{"num_few_shot": 5},
|
102 |
-
"metric_name":"accuracy"
|
103 |
-
},
|
104 |
-
"TruthfulQA":
|
105 |
-
{
|
106 |
-
"dataset_type":"truthful_qa",
|
107 |
-
"dataset_name":"TruthfulQA (0-shot)",
|
108 |
-
"metric_type":"mc2",
|
109 |
-
"metric_value":results["TruthfulQA"],
|
110 |
-
"dataset_config":"multiple_choice",
|
111 |
-
"dataset_split":"validation",
|
112 |
-
"dataset_revision":None,
|
113 |
-
"dataset_args":{"num_few_shot": 0},
|
114 |
-
"metric_name":None
|
115 |
-
},
|
116 |
-
"Winogrande":
|
117 |
-
{
|
118 |
-
"dataset_type":"winogrande",
|
119 |
-
"dataset_name":"Winogrande (5-shot)",
|
120 |
-
"metric_type":"acc",
|
121 |
-
"metric_value":results["Winogrande"],
|
122 |
-
"dataset_config":"winogrande_xl",
|
123 |
-
"dataset_split":"validation",
|
124 |
-
"dataset_args":{"num_few_shot": 5},
|
125 |
-
"metric_name":"accuracy"
|
126 |
-
},
|
127 |
-
"GSM8K":
|
128 |
-
{
|
129 |
-
"dataset_type":"gsm8k",
|
130 |
-
"dataset_name":"GSM8k (5-shot)",
|
131 |
-
"metric_type":"acc",
|
132 |
-
"metric_value":results["GSM8K"],
|
133 |
-
"dataset_config":"main",
|
134 |
-
"dataset_split":"test",
|
135 |
-
"dataset_args":{"num_few_shot": 5},
|
136 |
-
"metric_name":"accuracy"
|
137 |
-
}
|
138 |
-
}
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
def get_eval_results(repo):
|
143 |
-
results = search(df, repo)
|
144 |
-
task_summary = get_task_summary(results)
|
145 |
-
md_writer = MarkdownTableWriter()
|
146 |
-
md_writer.headers = ["Metric", "Value"]
|
147 |
-
md_writer.value_matrix = [["Avg.", results['Average ⬆️']]] + [[v["dataset_name"], v["metric_value"]] for v in task_summary.values()]
|
148 |
-
|
149 |
-
text = f"""
|
150 |
-
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
151 |
-
Detailed results can be found [here]({get_details_url(repo)})
|
152 |
-
|
153 |
-
{md_writer.dumps()}
|
154 |
-
"""
|
155 |
-
return text
|
156 |
-
|
157 |
-
|
158 |
-
def get_edited_yaml_readme(repo, token: str | None):
|
159 |
-
card = ModelCard.load(repo, token=token)
|
160 |
-
results = search(df, repo)
|
161 |
-
|
162 |
-
common = {"task_type": 'text-generation', "task_name": 'Text Generation', "source_name": "Open LLM Leaderboard", "source_url": f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query={repo}"}
|
163 |
-
|
164 |
-
tasks_results = get_task_summary(results)
|
165 |
-
|
166 |
-
if not card.data['eval_results']: # No results reported yet, we initialize the metadata
|
167 |
-
card.data["model-index"] = eval_results_to_model_index(repo.split('/')[1], [EvalResult(**task, **common) for task in tasks_results.values()])
|
168 |
-
else: # We add the new evaluations
|
169 |
-
for task in tasks_results.values():
|
170 |
-
cur_result = EvalResult(**task, **common)
|
171 |
-
if any(result.is_equal_except_value(cur_result) for result in card.data['eval_results']):
|
172 |
-
continue
|
173 |
-
card.data['eval_results'].append(cur_result)
|
174 |
-
|
175 |
-
return str(card)
|
176 |
-
|
177 |
-
|
178 |
-
def commit(repo, pr_number=None, message="Adding Evaluation Results", oauth_token: gr.OAuthToken | None = None): # specify pr number if you want to edit it, don't if you don't want
|
179 |
-
if oauth_token is None:
|
180 |
-
gr.Warning("You are not logged in; therefore, the leaderboard-pr-bot will open the pull request instead of you. Click on 'Sign in with Huggingface' to log in.")
|
181 |
-
token = BOT_HF_TOKEN
|
182 |
-
elif oauth_token.expires_at < time.time():
|
183 |
-
raise gr.Error("Token expired. Logout and try again.")
|
184 |
-
else:
|
185 |
-
token = oauth_token.token
|
186 |
-
|
187 |
-
if repo.startswith("https://huggingface.co/"):
|
188 |
-
try:
|
189 |
-
repo = RepoUrl(repo).repo_id
|
190 |
-
except Exception:
|
191 |
-
raise gr.Error(f"Not a valid repo id: {str(repo)}")
|
192 |
-
|
193 |
-
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}
|
194 |
-
|
195 |
-
try:
|
196 |
-
try: # check if there is a readme already
|
197 |
-
readme_text = get_edited_yaml_readme(repo, token=token) + get_eval_results(repo)
|
198 |
-
except Exception as e:
|
199 |
-
if "Repo card metadata block was not found." in str(e): # There is no readme
|
200 |
-
readme_text = get_edited_yaml_readme(repo, token=token)
|
201 |
-
else:
|
202 |
-
print(f"Something went wrong: {e}")
|
203 |
-
|
204 |
-
liste = [CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=readme_text.encode())]
|
205 |
-
commit = (create_commit(repo_id=repo, token=token, operations=liste, commit_message=message, commit_description=desc, repo_type="model", **edited).pr_url)
|
206 |
-
|
207 |
-
return commit
|
208 |
-
|
209 |
-
except Exception as e:
|
210 |
-
|
211 |
-
if "Discussions are disabled for this repo" in str(e):
|
212 |
-
return "Discussions disabled"
|
213 |
-
elif "Cannot access gated repo" in str(e):
|
214 |
-
return "Gated repo"
|
215 |
-
elif "Repository Not Found" in str(e):
|
216 |
-
return "Repository Not Found"
|
217 |
-
else:
|
218 |
-
return e
|
219 |
-
|
220 |
-
|
221 |
gradio_title="🧐 Open LLM Leaderboard Results PR Opener"
|
222 |
gradio_desc= """🎯 This tool's aim is to provide [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) results in the model card.
|
223 |
|
|
|
1 |
import os
|
2 |
import time
|
3 |
os.system("wget https://raw.githubusercontent.com/Weyaxi/scrape-open-llm-leaderboard/main/openllm.py")
|
4 |
+
from huggingface_hub import HfApi, HfFileSystem
|
|
|
|
|
|
|
|
|
|
|
5 |
import time
|
|
|
6 |
import pandas as pd
|
|
|
7 |
import threading
|
8 |
import gradio as gr
|
9 |
from gradio_space_ci import enable_space_ci
|
10 |
+
from functions import commit
|
11 |
|
12 |
enable_space_ci()
|
13 |
|
|
|
18 |
api = HfApi()
|
19 |
fs = HfFileSystem()
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
def refresh(how_much=3600): # default to 1 hour
|
|
|
22 |
time.sleep(how_much)
|
|
|
23 |
try:
|
24 |
+
api.restart_space(repo_id="Weyaxi/leaderboard-results-to-modelcard")
|
|
|
|
|
25 |
except Exception as e:
|
26 |
print(f"Error while scraping leaderboard, trying again... {e}")
|
27 |
refresh(600) # 10 minutes if any error happens
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
gradio_title="🧐 Open LLM Leaderboard Results PR Opener"
|
30 |
gradio_desc= """🎯 This tool's aim is to provide [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) results in the model card.
|
31 |
|
functions.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from huggingface_hub import CommitOperationAdd, create_commit, RepoUrl
|
3 |
+
from huggingface_hub import EvalResult, ModelCard
|
4 |
+
from huggingface_hub.repocard_data import eval_results_to_model_index
|
5 |
+
import time
|
6 |
+
from pytablewriter import MarkdownTableWriter
|
7 |
+
import gradio as gr
|
8 |
+
from openllm import get_json_format_data, get_datas
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
BOT_HF_TOKEN = os.getenv('BOT_HF_TOKEN')
|
12 |
+
|
13 |
+
data = get_json_format_data()
|
14 |
+
finished_models = get_datas(data)
|
15 |
+
df = pd.DataFrame(finished_models)
|
16 |
+
|
17 |
+
desc = """
|
18 |
+
This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr
|
19 |
+
|
20 |
+
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
|
21 |
+
|
22 |
+
If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions
|
23 |
+
"""
|
24 |
+
|
25 |
+
def search(df, value):
|
26 |
+
result_df = df[df["Model"] == value]
|
27 |
+
return result_df.iloc[0].to_dict() if not result_df.empty else None
|
28 |
+
|
29 |
+
|
30 |
+
def get_details_url(repo):
|
31 |
+
author, model = repo.split("/")
|
32 |
+
return f"https://huggingface.co/datasets/open-llm-leaderboard/details_{author}__{model}"
|
33 |
+
|
34 |
+
|
35 |
+
def get_query_url(repo):
|
36 |
+
return f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query={repo}"
|
37 |
+
|
38 |
+
|
39 |
+
def get_task_summary(results):
|
40 |
+
return {
|
41 |
+
"ARC":
|
42 |
+
{"dataset_type":"ai2_arc",
|
43 |
+
"dataset_name":"AI2 Reasoning Challenge (25-Shot)",
|
44 |
+
"metric_type":"acc_norm",
|
45 |
+
"metric_value":results["ARC"],
|
46 |
+
"dataset_config":"ARC-Challenge",
|
47 |
+
"dataset_split":"test",
|
48 |
+
"dataset_revision":None,
|
49 |
+
"dataset_args":{"num_few_shot": 25},
|
50 |
+
"metric_name":"normalized accuracy"
|
51 |
+
},
|
52 |
+
"HellaSwag":
|
53 |
+
{"dataset_type":"hellaswag",
|
54 |
+
"dataset_name":"HellaSwag (10-Shot)",
|
55 |
+
"metric_type":"acc_norm",
|
56 |
+
"metric_value":results["HellaSwag"],
|
57 |
+
"dataset_config":None,
|
58 |
+
"dataset_split":"validation",
|
59 |
+
"dataset_revision":None,
|
60 |
+
"dataset_args":{"num_few_shot": 10},
|
61 |
+
"metric_name":"normalized accuracy"
|
62 |
+
},
|
63 |
+
"MMLU":
|
64 |
+
{
|
65 |
+
"dataset_type":"cais/mmlu",
|
66 |
+
"dataset_name":"MMLU (5-Shot)",
|
67 |
+
"metric_type":"acc",
|
68 |
+
"metric_value":results["MMLU"],
|
69 |
+
"dataset_config":"all",
|
70 |
+
"dataset_split":"test",
|
71 |
+
"dataset_revision":None,
|
72 |
+
"dataset_args":{"num_few_shot": 5},
|
73 |
+
"metric_name":"accuracy"
|
74 |
+
},
|
75 |
+
"TruthfulQA":
|
76 |
+
{
|
77 |
+
"dataset_type":"truthful_qa",
|
78 |
+
"dataset_name":"TruthfulQA (0-shot)",
|
79 |
+
"metric_type":"mc2",
|
80 |
+
"metric_value":results["TruthfulQA"],
|
81 |
+
"dataset_config":"multiple_choice",
|
82 |
+
"dataset_split":"validation",
|
83 |
+
"dataset_revision":None,
|
84 |
+
"dataset_args":{"num_few_shot": 0},
|
85 |
+
"metric_name":None
|
86 |
+
},
|
87 |
+
"Winogrande":
|
88 |
+
{
|
89 |
+
"dataset_type":"winogrande",
|
90 |
+
"dataset_name":"Winogrande (5-shot)",
|
91 |
+
"metric_type":"acc",
|
92 |
+
"metric_value":results["Winogrande"],
|
93 |
+
"dataset_config":"winogrande_xl",
|
94 |
+
"dataset_split":"validation",
|
95 |
+
"dataset_args":{"num_few_shot": 5},
|
96 |
+
"metric_name":"accuracy"
|
97 |
+
},
|
98 |
+
"GSM8K":
|
99 |
+
{
|
100 |
+
"dataset_type":"gsm8k",
|
101 |
+
"dataset_name":"GSM8k (5-shot)",
|
102 |
+
"metric_type":"acc",
|
103 |
+
"metric_value":results["GSM8K"],
|
104 |
+
"dataset_config":"main",
|
105 |
+
"dataset_split":"test",
|
106 |
+
"dataset_args":{"num_few_shot": 5},
|
107 |
+
"metric_name":"accuracy"
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
def get_eval_results(repo):
|
114 |
+
results = search(df, repo)
|
115 |
+
task_summary = get_task_summary(results)
|
116 |
+
md_writer = MarkdownTableWriter()
|
117 |
+
md_writer.headers = ["Metric", "Value"]
|
118 |
+
md_writer.value_matrix = [["Avg.", results['Average ⬆️']]] + [[v["dataset_name"], v["metric_value"]] for v in task_summary.values()]
|
119 |
+
|
120 |
+
text = f"""
|
121 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
122 |
+
Detailed results can be found [here]({get_details_url(repo)})
|
123 |
+
|
124 |
+
{md_writer.dumps()}
|
125 |
+
"""
|
126 |
+
return text
|
127 |
+
|
128 |
+
|
129 |
+
def get_edited_yaml_readme(repo, token: str | None):
|
130 |
+
card = ModelCard.load(repo, token=token)
|
131 |
+
results = search(df, repo)
|
132 |
+
|
133 |
+
common = {"task_type": 'text-generation', "task_name": 'Text Generation', "source_name": "Open LLM Leaderboard", "source_url": f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query={repo}"}
|
134 |
+
|
135 |
+
tasks_results = get_task_summary(results)
|
136 |
+
|
137 |
+
if not card.data['eval_results']: # No results reported yet, we initialize the metadata
|
138 |
+
card.data["model-index"] = eval_results_to_model_index(repo.split('/')[1], [EvalResult(**task, **common) for task in tasks_results.values()])
|
139 |
+
else: # We add the new evaluations
|
140 |
+
for task in tasks_results.values():
|
141 |
+
cur_result = EvalResult(**task, **common)
|
142 |
+
if any(result.is_equal_except_value(cur_result) for result in card.data['eval_results']):
|
143 |
+
continue
|
144 |
+
card.data['eval_results'].append(cur_result)
|
145 |
+
|
146 |
+
return str(card)
|
147 |
+
|
148 |
+
|
149 |
+
def commit(repo, pr_number=None, message="Adding Evaluation Results", oauth_token: gr.OAuthToken | None = None): # specify pr number if you want to edit it, don't if you don't want
|
150 |
+
if oauth_token is None:
|
151 |
+
gr.Warning("You are not logged in; therefore, the leaderboard-pr-bot will open the pull request instead of you. Click on 'Sign in with Huggingface' to log in.")
|
152 |
+
token = BOT_HF_TOKEN
|
153 |
+
elif oauth_token.expires_at < time.time():
|
154 |
+
raise gr.Error("Token expired. Logout and try again.")
|
155 |
+
else:
|
156 |
+
token = oauth_token.token
|
157 |
+
|
158 |
+
if repo.startswith("https://huggingface.co/"):
|
159 |
+
try:
|
160 |
+
repo = RepoUrl(repo).repo_id
|
161 |
+
except Exception:
|
162 |
+
raise gr.Error(f"Not a valid repo id: {str(repo)}")
|
163 |
+
|
164 |
+
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}
|
165 |
+
|
166 |
+
try:
|
167 |
+
try: # check if there is a readme already
|
168 |
+
readme_text = get_edited_yaml_readme(repo, token=token) + get_eval_results(repo)
|
169 |
+
except Exception as e:
|
170 |
+
if "Repo card metadata block was not found." in str(e): # There is no readme
|
171 |
+
readme_text = get_edited_yaml_readme(repo, token=token)
|
172 |
+
else:
|
173 |
+
print(f"Something went wrong: {e}")
|
174 |
+
|
175 |
+
liste = [CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=readme_text.encode())]
|
176 |
+
commit = (create_commit(repo_id=repo, token=token, operations=liste, commit_message=message, commit_description=desc, repo_type="model", **edited).pr_url)
|
177 |
+
|
178 |
+
return commit
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
|
182 |
+
if "Discussions are disabled for this repo" in str(e):
|
183 |
+
return "Discussions disabled"
|
184 |
+
elif "Cannot access gated repo" in str(e):
|
185 |
+
return "Gated repo"
|
186 |
+
elif "Repository Not Found" in str(e):
|
187 |
+
return "Repository Not Found"
|
188 |
+
else:
|
189 |
+
return e
|