File size: 6,158 Bytes
73d2dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7807503
e72c121
4bf3314
 
2302449
e72c121
e58d934
 
 
 
434948d
e72c121
 
e58d934
bf9dd3c
18d93b2
434948d
 
 
73d2dd0
2302449
4bf3314
 
 
 
 
 
 
 
2302449
73d2dd0
2302449
 
 
 
0f1f17a
 
 
 
 
 
 
e91918c
 
0f1f17a
 
 
 
 
 
2302449
73d2dd0
 
0f1f17a
 
 
73d2dd0
 
0f1f17a
4bf3314
 
 
 
 
 
 
0f1f17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bf3314
73d2dd0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import gradio as gr
import json
from datetime import datetime
import openai


# Assistant Creation function
def create_assistant_json(uploaded_file, assistant_name,  assistant_message):
    client = openai.OpenAI(api_key=os.environ["API_TOKEN"])
    # Check if a file was uploaded
    print(uploaded_file)
    df = open(uploaded_file, "rb")
    file = client.files.create(file=df,
                               purpose='assistants')

    assistant = client.beta.assistants.create(
        name=assistant_name,
        instructions=assistant_message,
        model="gpt-4-0125-preview",
        tools=[
            {
                "type": "retrieval"  # This adds the knowledge base as a tool
            }
        ],
        file_ids=[file.id])
    
    return assistant.id

def generate_cocktail(prompt, mood, sweetness, sour, savory, bitter, flavor_association, drinking_experience, soberness_level, allergies, additional_requests):
    client = openai.OpenAI(api_key=os.environ["API_TOKEN"])
    instruction = "Please provide a cocktail recipe given the mood and preference of the user.\n\n"
    user_prompt = f"Mood: {mood}\nTaste: Sweetness {sweetness}/10, Sour {sour}/10, Savory {savory}/10, Bitter {bitter}/10\nFlavor Association: {flavor_association}\nDrinking Experience: {drinking_experience}\nLevel of Soberness: {soberness_level}\nAllergies: {allergies}\nAdditional Requests: {additional_requests}\n\nMake sure to avoid all allergic ingredients.\n\nRecipe:"
    prompt = instruction + user_prompt

    messages=[
    {"role": "system", "content": "You are a helpful bartender assistant."},
    {"role": "user", "content": prompt}
  ]
    try:
        response = client.chat.completions.create(
            model="gpt-4-0125-preview", 
            messages=messages,
            max_tokens=1024)
        return response.choices[0].message.content
    except Exception as e:
        return str(e)

# Creating the Gradio interface
with gr.Blocks(css='''
        .gradio-container {background: url('https://images.unsplash.com/photo-1514361726087-38371321b5cd?q=80&w=2370&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D');}
        .gradio-container { background-color: rgba(255, 255, 255, 0.1) !important; color: white; }
        .gradio-container * { color: inherit; }
        .gradio-label { color: white !important; }
        .gradio-description { color: white !important; }
        input, textarea, select { background-color: rgba(255, 255, 255, 0.2) !important; border-color: rgba(255, 255, 255, 0.4) !important; color: white !important; }
        .gradio-button { background-color: rgba(255, 255, 255, 0.3) !important; border-color: rgba(255, 255, 255, 0.4) !important; color: white !important; }
        .gradio-theme-dark .gradio-toolbar { background-color: rgba(0, 0, 0, 0.5) !important; }
    ''') as demo:
    with gr.Row():
        gr.HTML("""
            <h2 style='text-align: center;'>MoodShaker Cocktail Generator</h2>
            <p style='text-align: center;'>Enter your preferences and let AI create a unique cocktail recipe for you!</p>
        """)
    
    with gr.Column(scale=1):
        mood = gr.Textbox(label="Mood")
        sweetness = gr.Slider(label="Sweetness", minimum=0, maximum=10)
        sour = gr.Slider(label="Sour", minimum=0, maximum=10)
        savory = gr.Slider(label="Savory", minimum=0, maximum=10)
        bitter = gr.Slider(label="Bitter", minimum=0, maximum=10)
        flavor_association = gr.CheckboxGroup(label="Flavor Association", choices=["Fruity", "Herbal", "Spicy", "Floral", "Nutty", "Woody", "Earthy"])
        drinking_experience = gr.CheckboxGroup(label="Drinking Experience", choices=["Refreshing", "Warming", "Comforting", "Energizing", "Relaxing"])
        soberness_level = gr.Slider(label="Level of Soberness", minimum=0, maximum=10)
        allergies = gr.Textbox(label="Allergies")
        additional_requests = gr.Textbox(label="Anything else you would like to address")
    
    with gr.Row():
        generate_button = gr.Button("Generate Your Cocktail Recipe")
        output_recipe = gr.HTML(label="Your Cocktail Recipe")
    
    generate_button.click(
        fn=generate_cocktail,
        inputs=[mood, sweetness, sour, savory, bitter, flavor_association, drinking_experience, soberness_level, allergies, additional_requests],
        outputs=output_recipe
    )


        # sweetness .range-slider {background: #FAD02E;}
        # sour .range-slider {background: #4CAF50;}
        # savory .range-slider {background: #795548;}
        # bitter .range-slider {background: #F44336;}
        # soberness_level .range-slider {background: #2196F3;}

        
# with gr.Blocks(css=".gradio-container {background: url(https://static.vecteezy.com/system/resources/thumbnails/030/814/051/small/wooden-table-and-blur-tropical-green-grass-background-product-display-montage-high-quality-8k-fhd-ai-generated-photo.jpg)}") as demo:
#     gr.Markdown("## To create an OpenAI Assistant please fill in the following sections. Upload a file to give the Assistant knowledge and a focus on something outside of it's normal training. Then add an assistant name and message. The Assistant message should guide the model into in a role. An example would be, You are a helpful Asssitant who is knowledgable in the field of...")
#     gr.Markdown("## After creating the ID head to [OpenAI_Assistant_Chat](https://huggingface.co/spaces/jadend/OpenAI_Assistant_Chat).")
#     with gr.Row():
#         # file_input = gr.File(label="Upload your file", type="filepath")
#         description = gr.Textbox(label="The User Input")
#         # chatbot = gr.Textbox(label="Chatbot Response")
#     generate_button = gr.Button("Generate Your Cocktail Recipe") 
#     output_id = gr.Textbox(label="Your Cocktail Recipe", value="")
    
#     generate_button.click(
#         fn=generate_response,
#         inputs=description,
#         outputs=output_id
#     )


if __name__ == "__main__":
    demo.launch(#enable_queue=False,
        # Creates an auth screen 
        auth_message="Welcome! Enter a Username and Password"
               ).queue()