Spaces:
Sleeping
Sleeping
File size: 6,188 Bytes
73d2dd0 2b7543b e72c121 4bf3314 e10d86a 76e626d e10d86a e72c121 e58d934 434948d e72c121 e58d934 bf9dd3c ea69799 434948d ea69799 434948d 73d2dd0 2302449 96b6173 ec66728 96b6173 2302449 73d2dd0 2302449 96b6173 2302449 f620b50 0f1f17a f620b50 35b76ff f620b50 e91918c f620b50 0f1f17a f620b50 0f1f17a 86206de 96b6173 73d2dd0 0f1f17a 73d2dd0 0f1f17a 4bf3314 0f1f17a 4bf3314 73d2dd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import os
import gradio as gr
import json
from datetime import datetime
import openai
# Assistant Creation function
def create_assistant_json(uploaded_file, assistant_name, assistant_message):
client = openai.OpenAI(api_key=os.environ["API_TOKEN"])
# Check if a file was uploaded
print(uploaded_file)
df = open(uploaded_file, "rb")
file = client.files.create(file=df,
purpose='assistants')
assistant = client.beta.assistants.create(
name=assistant_name,
instructions=assistant_message,
model="gpt-4-0125-preview",
tools=[
{
"type": "retrieval" # This adds the knowledge base as a tool
}
],
file_ids=[file.id])
return assistant.id
def generate_cocktail(mood, sweetness, sour, savory, bitter, flavor_association, drinking_experience, soberness_level, allergies, additional_requests):
client = openai.OpenAI(api_key=os.environ["API_TOKEN"])
instruction = "Please provide a cocktail recipe given the mood and preference of the user.\n\n"
user_prompt = f"Mood: {mood}\nTaste: Sweetness {sweetness}/10, Sour {sour}/10, Savory {savory}/10, Bitter {bitter}/10\nFlavor Association: {flavor_association}\nDrinking Experience: {drinking_experience}\nLevel of Soberness: {soberness_level}\nAllergies: {allergies}\nAdditional Requests: {additional_requests}\n\nMake sure to avoid all allergic ingredients.\n\n"
output_format = "Please strictly follow this output format:\n\nCocktail Name:[name]\nQuote:[one sentence quote related to the cocktail and the mood description]\nIngredients:[ingredients]\nInstruction:[instruction]\nNotes:[notes]"
prompt = instruction + user_prompt + output_format
messages=[
{"role": "system", "content": "You are a helpful bartender assistant."},
{"role": "user", "content": prompt}
]
try:
response = client.chat.completions.create(
model="gpt-4-0125-preview",
messages=messages,
max_tokens=1024)
return f'<p style="color: white; font-size: 20px;">{response.choices[0].message.content}</p>'
except Exception as e:
return f'<p style="color: white; font-size: 20px;">{str(e)}</p>'
# Creating the Gradio interface
with gr.Blocks(css='''
.gradio-container {
background: url('https://images.unsplash.com/photo-1514361726087-38371321b5cd?q=80&w=2370&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D');
}
.gradio-textbox {
opacity: 0.5; /* Change the opacity of the textbox */
}
''') as demo:
with gr.Row():
gr.HTML("""
<h2 style='text-align: center; color: white;'>MoodShaker Cocktail Generator</h2>
<p style='text-align: center; color: white;'>Enter your preferences and let AI create a unique cocktail recipe for you!</p>
""")
with gr.Row():
mood = gr.Textbox(label="Mood")
with gr.Row():
sweetness = gr.Slider(label="Sweetness", minimum=0, maximum=10, elem_id="slider-sweetness")
sour = gr.Slider(label="Sour", minimum=0, maximum=10, elem_id="slider-sour")
savory = gr.Slider(label="Savory", minimum=0, maximum=10, elem_id="slider-savory")
bitter = gr.Slider(label="Bitter", minimum=0, maximum=10, elem_id="slider-bitter")
soberness_level = gr.Slider(label="Level of Soberness", minimum=0, maximum=10, elem_id="slider-soberness_level")
with gr.Row():
flavor_association = gr.CheckboxGroup(label="Flavor Association", choices=["Fruity", "Herbal", "Spicy", "Floral", "Nutty", "Woody", "Earthy"])
drinking_experience = gr.CheckboxGroup(label="Drinking Experience", choices=["Refreshing", "Warming", "Comforting", "Energizing", "Relaxing"])
with gr.Row():
allergies = gr.Textbox(label="Allergies")
additional_requests = gr.Textbox(label="Anything else you would like to address")
with gr.Row():
generate_button = gr.Button("Generate Your Cocktail Recipe")
with gr.Row():
output_recipe = gr.Markdown(label="Your Cocktail Recipe")
generate_button.click(
fn=generate_cocktail,
inputs=[mood, sweetness, sour, savory, bitter, flavor_association, drinking_experience, soberness_level, allergies, additional_requests],
outputs=output_recipe
)
# sweetness .range-slider {background: #FAD02E;}
# sour .range-slider {background: #4CAF50;}
# savory .range-slider {background: #795548;}
# bitter .range-slider {background: #F44336;}
# soberness_level .range-slider {background: #2196F3;}
# with gr.Blocks(css=".gradio-container {background: url(https://static.vecteezy.com/system/resources/thumbnails/030/814/051/small/wooden-table-and-blur-tropical-green-grass-background-product-display-montage-high-quality-8k-fhd-ai-generated-photo.jpg)}") as demo:
# gr.Markdown("## To create an OpenAI Assistant please fill in the following sections. Upload a file to give the Assistant knowledge and a focus on something outside of it's normal training. Then add an assistant name and message. The Assistant message should guide the model into in a role. An example would be, You are a helpful Asssitant who is knowledgable in the field of...")
# gr.Markdown("## After creating the ID head to [OpenAI_Assistant_Chat](https://huggingface.co/spaces/jadend/OpenAI_Assistant_Chat).")
# with gr.Row():
# # file_input = gr.File(label="Upload your file", type="filepath")
# description = gr.Textbox(label="The User Input")
# # chatbot = gr.Textbox(label="Chatbot Response")
# generate_button = gr.Button("Generate Your Cocktail Recipe")
# output_id = gr.Textbox(label="Your Cocktail Recipe", value="")
# generate_button.click(
# fn=generate_response,
# inputs=description,
# outputs=output_id
# )
if __name__ == "__main__":
demo.launch(#enable_queue=False,
# Creates an auth screen
auth_message="Welcome! Enter a Username and Password"
).queue() |