MoodShaker / app.py
Jiaaaaaaax's picture
Update save button
b4d74c5 verified
raw
history blame
8.57 kB
import os
import gradio as gr
import json
import re
from datetime import datetime
import openai
import pdfkit
import random
import base64
music_files = [
"RPReplay_Final1712757356.mp3",
"RPReplay_Final1712801927.mp3",
"RPReplay_Final1712802362.mp3",
"RPReplay_Final1712802406.mp3",
"RPReplay_Final1712757356.mp3",
"RPReplay_Final1712802448.mp3",
"RPReplay_Final1712802599.mp3"
]
# Function to play background music
def play_music():
"""Returns the path to the music file and makes the audio player visible."""
music_path = random.choice(music_files)
return music_path, gr.update(visible=True)
# Main function to generate a cocktail recipe based on user preferences
def generate_cocktail(mood, sweetness, sour, savory, bitter, flavor_association, drinking_experience, soberness_level, allergies, additional_requests):
"""Generates a cocktail recipe using OpenAI's GPT-4 based on user input."""
client = openai.OpenAI(api_key=os.environ["API_TOKEN"])
instruction = "Please provide a cocktail recipe given the mood and preference of the user.\n\n"
user_prompt = f"Mood: {mood}\nTaste: Sweetness {sweetness}/10, Sour {sour}/10, Savory {savory}/10, Bitter {bitter}/10\nFlavor: {flavor_association}\nDrinking Experience: {drinking_experience}\nLevel of Soberness: {soberness_level}\nAllergies: {allergies}\nAdditional Requests: {additional_requests}\n\nMake sure to avoid all allergic ingredients.\n\n"
output_format = "Please strictly follow this output format:\n\nCocktail Name:[name]\nQuote:[one sentence quote related to the cocktail and the mood description]\nIngredients:[ingredient 1]\n[ingredient 2]\n...\nInstruction:1. [step 1]\n2. [step 2]\n...\nNotes:[notes]"
prompt = instruction + user_prompt + output_format
messages=[
{"role": "system", "content": "You are a helpful bartender assistant."},
{"role": "user", "content": prompt}
]
try:
response = client.chat.completions.create(
model="gpt-4-0125-preview",
messages=messages,
max_tokens=1024)
name, quote, ingredients, instruction, notes = extract_info(response.choices[0].message.content)
return format_cocktail_output(name, quote, ingredients, instruction, notes), True, True
except Exception as e:
return f'<p style="color: white; font-size: 20px;">{str(e)}</p>'
# Extract information from the response generated by OpenAI
def extract_info(output_text):
"""Extracts the cocktail recipe information from the response text."""
pattern = r"Cocktail Name:(.*?)Quote:(.*?)Ingredients:(.*?)Instruction:(.*?)Notes:(.*?)$"
match = re.search(pattern, output_text, re.DOTALL)
if match:
name = match.group(1).strip()
quote = match.group(2).strip()
ingredients = match.group(3).strip().replace('\n', '<br>')
instruction = match.group(4).strip().replace('\n', '<br>')
notes = match.group(5).strip()
return name, quote, ingredients, instruction, notes
else:
return None
# Format the cocktail recipe for display
def format_cocktail_output(name, quote, ingredients, instruction, notes):
"""Formats the cocktail recipe into HTML for display."""
html_output = f'''
<div style="text-align: center; font-family: 'Verdana', sans-serif; color: white;">
<h1 style="font-size: 48px; color: white;">{name}</h1>
<p style="font-size: 36px; margin-top: -15px; font-style: italic; color: white;">{quote}</p>
<p style="font-size: 20px; color: white;">
<strong style="color: white;">Ingredients:</strong><br>
{ingredients}<br>
<strong style="color: white;">Instruction:</strong><br>
{instruction}<br>
<strong style="color: white;">Notes:</strong><br>
{notes}<br>
</p>
</div>
'''
return html_output
def save_as_pdf(html_content):
"""Converts HTML content to PDF, encodes it in base64, and returns a download link."""
html_path = "output_recipe.html"
pdf_path = "output_recipe.pdf"
# Write the HTML content to a temporary file
with open(html_path, 'w') as f:
f.write(html_content)
# Convert HTML to PDF
pdfkit.from_file(html_path, pdf_path)
# Encode the PDF file in base64
with open(pdf_path, "rb") as pdf_file:
encoded_pdf = base64.b64encode(pdf_file.read()).decode("utf-8")
# Create a Data URL for the PDF
pdf_data_url = f"data:application/pdf;base64,{encoded_pdf}"
# Return HTML anchor tag for the download link
return f'<a href="{pdf_data_url}" download="CocktailRecipe.pdf" style="color: white; font-size: 20px;">Download PDF</a>'
with open('style.css', 'r') as file:
css_styles = file.read()
# Creating the Gradio interface
with gr.Blocks(css=css_styles) as demo:
with gr.Row():
gr.HTML('''
<div style="text-align: center; margin: 0;">
<img src="https://huggingface.co/spaces/WhartonHackAIthon/MoodShaker/resolve/main/MoodShaker_Slogan.png" alt="MoodShaker Cocktail Generator" class="centered-image">
</div>
''')
with gr.Row():
mood = gr.Textbox(label="How are you feeling today?", elem_classes=["custom-input"])
flavor_association = gr.CheckboxGroup(label="Flavor", choices=["Fruity", "Herbal", "Spicy", "Floral", "Nutty", "Woody", "Earthy"], elem_classes=["custom-checkbox-group1"])
drinking_experience = gr.CheckboxGroup(label="Drinking Experience", choices=["Refreshing", "Warming", "Comforting", "Energizing", "Relaxing"], elem_classes=["custom-checkbox-group2"])
with gr.Row():
sweetness = gr.Slider(label="Sweetness", minimum=0, maximum=10, elem_id="slider-sweetness",elem_classes=["slider-sweetness"])
sour = gr.Slider(label="Sour", minimum=0, maximum=10, elem_id="slider-sour", elem_classes=["slider-sour"])
savory = gr.Slider(label="Savory", minimum=0, maximum=10, elem_id="slider-savory", elem_classes=["slider-savory"])
bitter = gr.Slider(label="Bitter", minimum=0, maximum=10, elem_id="slider-bitter", elem_classes=["slider-bitter"])
soberness_level = gr.Slider(label="Level of Soberness", minimum=0, maximum=10, value=10, elem_id="slider-soberness_level", elem_classes=["slider-soberness_level"])
with gr.Row():
allergies = gr.Textbox(label="Allergies", scale=6, elem_classes=["custom-input1"])
additional_requests = gr.Textbox(label="Anything else you would like to address", scale=6, elem_classes=["custom-input2"])
generate_button = gr.Button("Generate Your Cocktail Recipe", scale=3, elem_classes=["generate-button"])
clear_button = gr.Button("Clear", scale=1)
with gr.Row():
output_recipe = gr.HTML(label="Your Cocktail Recipe")
play_button = gr.Button("Play Music", visible=False, elem_classes=["generate-button"], scale=1) # Initially not visible
background_music = gr.Audio(label="Background Music", autoplay=True, visible=False, scale=4) # Initially not visible
pdf_download_link = gr.HTML(visible=False) # For displaying the PDF download link
with gr.Row():
save_pdf_button = gr.Button("Download Recipe as PDF", visible=False)
def on_generate_click(*args):
recipe, show_play_button, show_save_button = generate_cocktail(*args)
return recipe, gr.update(visible=show_play_button), gr.update(visible=show_save_button)
def reset():
return "", 0, 0, 0, 0, [], [], 10, "", "", "", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
generate_button.click(
fn=on_generate_click,
inputs=[mood, sweetness, sour, savory, bitter, flavor_association, drinking_experience, soberness_level, allergies, additional_requests],
outputs=[output_recipe, play_button, save_pdf_button]
)
play_button.click(fn=play_music, inputs=[], outputs=[background_music, background_music])
save_pdf_button.click(fn=save_as_pdf, inputs=[output_recipe], outputs=[pdf_download_link])
clear_button.click(fn=reset, inputs=[], outputs=[mood, sweetness, sour, savory, bitter, flavor_association, drinking_experience, soberness_level, allergies, additional_requests, output_recipe, play_button, background_music, save_pdf_button])
if __name__ == "__main__":
demo.launch(#enable_queue=False,
# Creates an auth screen
auth_message="Welcome! Enter a Username and Password"
).queue()