MoodShaker / app.py
tywei08's picture
Update app.py
c5cf242 verified
raw
history blame
7.37 kB
import os
import gradio as gr
import json
import re
from datetime import datetime
import openai
# Assistant Creation function
def create_assistant_json(uploaded_file, assistant_name, assistant_message):
client = openai.OpenAI(api_key=os.environ["API_TOKEN"])
# Check if a file was uploaded
print(uploaded_file)
df = open(uploaded_file, "rb")
file = client.files.create(file=df,
purpose='assistants')
assistant = client.beta.assistants.create(
name=assistant_name,
instructions=assistant_message,
model="gpt-4-0125-preview",
tools=[
{
"type": "retrieval" # This adds the knowledge base as a tool
}
],
file_ids=[file.id])
return assistant.id
def generate_cocktail(mood, sweetness, sour, savory, bitter, flavor_association, drinking_experience, soberness_level, allergies, additional_requests):
client = openai.OpenAI(api_key=os.environ["API_TOKEN"])
instruction = "Please provide a cocktail recipe given the mood and preference of the user.\n\n"
user_prompt = f"Mood: {mood}\nTaste: Sweetness {sweetness}/10, Sour {sour}/10, Savory {savory}/10, Bitter {bitter}/10\nFlavor Association: {flavor_association}\nDrinking Experience: {drinking_experience}\nLevel of Soberness: {soberness_level}\nAllergies: {allergies}\nAdditional Requests: {additional_requests}\n\nMake sure to avoid all allergic ingredients.\n\n"
output_format = "Please strictly follow this output format:\n\nCocktail Name:[name]\n\nQuote:[one sentence quote related to the cocktail and the mood description]\n\nIngredients:[ingredients one at a line]\n\nInstruction:[instruction]\n\nNotes:[notes]"
prompt = instruction + user_prompt + output_format
messages=[
{"role": "system", "content": "You are a helpful bartender assistant."},
{"role": "user", "content": prompt}
]
try:
response = client.chat.completions.create(
model="gpt-4-0125-preview",
messages=messages,
max_tokens=1024)
name, quote, ingredients, instruction, notes = extract_info(response.choices[0].message.content)
return format_cocktail_output(name, quote, ingredients, instruction, notes)
except Exception as e:
return f'<p style="color: white; font-size: 20px;">{str(e)}</p>'
def extract_info(output_text):
pattern = r"Cocktail Name:(.*?)Quote:(.*?)Ingredients:(.*?)Instruction:(.*?)Notes:(.*?)$"
match = re.search(pattern, output_text, re.DOTALL)
if match:
name = match.group(1)
quote = match.group(2)
ingredients = match.group(3)
instruction = match.group(4)
notes = match.group(5)
return name, quote, ingredients, instruction, notes
else:
return None
def format_cocktail_output(name, quote, ingredients, instruction, notes):
# Construct the HTML output
html_output = f'''
<div style="text-align: center; font-family: 'monospace'; color: #FFFFFF;">
<h1 style="font-size: 40px;">{name}</h1>
<p style="font-size: 30px; margin-top: -10px; font-style: italic;">{quote}</p>
<p style="font-size: 18px;">
<strong>Ingredients:</strong> {ingredients}<br>
<strong>Instruction:</strong> {instruction}<br>
<strong>Notes:</strong> {notes}<br>
</p>
</div>
'''
return html_output
# Creating the Gradio interface
with gr.Blocks(css='''
.gradio-container {
background: url('https://images.unsplash.com/photo-1514361726087-38371321b5cd?q=80&w=2370&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D');
}
.gradio-textbox {
opacity: 0.5; /* Change the opacity of the textbox */
}
''') as demo:
with gr.Row():
gr.HTML("""
<h2 style='text-align: center; color: white;'>MoodShaker Cocktail Generator</h2>
<p style='text-align: center; color: white;'>Enter your preferences and let AI create a unique cocktail recipe for you!</p>
""")
with gr.Row():
mood = gr.Textbox(label="Mood")
with gr.Row():
sweetness = gr.Slider(label="Sweetness", minimum=0, maximum=10, elem_id="slider-sweetness")
sour = gr.Slider(label="Sour", minimum=0, maximum=10, elem_id="slider-sour")
savory = gr.Slider(label="Savory", minimum=0, maximum=10, elem_id="slider-savory")
bitter = gr.Slider(label="Bitter", minimum=0, maximum=10, elem_id="slider-bitter")
soberness_level = gr.Slider(label="Level of Soberness", minimum=0, maximum=10, elem_id="slider-soberness_level")
with gr.Row():
flavor_association = gr.CheckboxGroup(label="Flavor Association", choices=["Fruity", "Herbal", "Spicy", "Floral", "Nutty", "Woody", "Earthy"])
drinking_experience = gr.CheckboxGroup(label="Drinking Experience", choices=["Refreshing", "Warming", "Comforting", "Energizing", "Relaxing"])
with gr.Row():
allergies = gr.Textbox(label="Allergies")
additional_requests = gr.Textbox(label="Anything else you would like to address")
with gr.Row():
generate_button = gr.Button("Generate Your Cocktail Recipe")
with gr.Row():
output_recipe = gr.HTML(label="Your Cocktail Recipe")
generate_button.click(
fn=generate_cocktail,
inputs=[mood, sweetness, sour, savory, bitter, flavor_association, drinking_experience, soberness_level, allergies, additional_requests],
outputs=output_recipe
)
# sweetness .range-slider {background: #FAD02E;}
# sour .range-slider {background: #4CAF50;}
# savory .range-slider {background: #795548;}
# bitter .range-slider {background: #F44336;}
# soberness_level .range-slider {background: #2196F3;}
# with gr.Blocks(css=".gradio-container {background: url(https://static.vecteezy.com/system/resources/thumbnails/030/814/051/small/wooden-table-and-blur-tropical-green-grass-background-product-display-montage-high-quality-8k-fhd-ai-generated-photo.jpg)}") as demo:
# gr.Markdown("## To create an OpenAI Assistant please fill in the following sections. Upload a file to give the Assistant knowledge and a focus on something outside of it's normal training. Then add an assistant name and message. The Assistant message should guide the model into in a role. An example would be, You are a helpful Asssitant who is knowledgable in the field of...")
# gr.Markdown("## After creating the ID head to [OpenAI_Assistant_Chat](https://huggingface.co/spaces/jadend/OpenAI_Assistant_Chat).")
# with gr.Row():
# # file_input = gr.File(label="Upload your file", type="filepath")
# description = gr.Textbox(label="The User Input")
# # chatbot = gr.Textbox(label="Chatbot Response")
# generate_button = gr.Button("Generate Your Cocktail Recipe")
# output_id = gr.Textbox(label="Your Cocktail Recipe", value="")
# generate_button.click(
# fn=generate_response,
# inputs=description,
# outputs=output_id
# )
if __name__ == "__main__":
demo.launch(#enable_queue=False,
# Creates an auth screen
auth_message="Welcome! Enter a Username and Password"
).queue()