File size: 4,353 Bytes
064a25d
e4fbfab
 
 
 
 
 
 
064a25d
e4fbfab
 
 
 
 
 
 
 
6f35e8c
 
e4fbfab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd2873
e4fbfab
 
 
8dd2873
e4fbfab
 
7edb958
e4fbfab
 
 
7edb958
e4fbfab
8dd2873
e4fbfab
 
 
 
 
 
 
 
 
 
7edb958
 
 
e4fbfab
 
 
 
 
8dd2873
e4fbfab
 
d5c7130
 
 
 
 
 
 
 
 
8dd2873
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import streamlit as st
import hopsworks
import pandas as pd
import os
import time
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime, timedelta

# Constants
DATA_DIR = "data"
TIMESTAMP_FILE = "last_download_time.txt"

# Initialize Hopsworks connection
def connect_to_hopsworks():
    st.write("Connecting to Hopsworks...")
    project_name = "id2223AirQuality"
    HOPSWORKS_API_KEY = os.getenv("HOPSWORKS_API_KEY")
    project = hopsworks.login(project="id2223AirQuality", api_key_value=HOPSWORKS_API_KEY)
    return project

# Fetch data from Hopsworks feature group
def fetch_data_from_feature_group(project, feature_group_name, version):
    feature_store = project.get_feature_store()
    feature_group = feature_store.get_feature_group(name=feature_group_name, version=version)
    data = feature_group.read()
    return data

# Save data locally
def save_data_locally(data, filename):
    os.makedirs(DATA_DIR, exist_ok=True)
    filepath = os.path.join(DATA_DIR, filename)
    data.to_csv(filepath, index=False)
    
    # Save timestamp
    timestamp_path = os.path.join(DATA_DIR, TIMESTAMP_FILE)
    with open(timestamp_path, "w") as f:
        f.write(str(datetime.now()))
    return filepath

# Load local data
def load_local_data(filename):
    filepath = os.path.join(DATA_DIR, filename)
    if os.path.exists(filepath):
        return pd.read_csv(filepath)
    else:
        return None

# Check if local data is valid
def is_local_data_valid():
    timestamp_path = os.path.join(DATA_DIR, TIMESTAMP_FILE)
    if not os.path.exists(timestamp_path):
        return False
    try:
        with open(timestamp_path, "r") as f:
            last_download_time = datetime.fromisoformat(f.read().strip())
        # Check if the data is more than a day old
        if datetime.now() - last_download_time > timedelta(days=1):
            return False
        return True
    except Exception as e:
        st.warning(f"Error reading timestamp: {e}")
        return False

# Plot graphs
def plot_graphs(data):
    st.write("### Data Preview")
    st.dataframe(data.head())

    #st.write("### Histogram")
    #column = st.selectbox("Select column for histogram", data.columns)
    #fig, ax = plt.subplots()
    #sns.histplot(data[column], kde=True, ax=ax)
    #st.pyplot(fig)

    #st.write("### Correlation Matrix")
    #fig, ax = plt.subplots()
    #sns.heatmap(data.corr(), annot=True, cmap="coolwarm", ax=ax)
    #st.pyplot(fig)

# Streamlit UI
def main():
    st.title("Hopsworks Feature Group Explorer")
    
    # Initialize session state
    if "hopsworks_project" not in st.session_state:
        st.session_state.hopsworks_project = None
    if "data" not in st.session_state:
        st.session_state.data = None

    # User inputs for feature group and version
    """st.sidebar.title("Data Settings")
    feature_group_name = st.sidebar.text_input("Feature Group Name", value="predictions")
    version = st.sidebar.number_input("Feature Group Version", value=1, min_value=1)
    filename = st.sidebar.text_input("Local Filename", value="data.csv")
    """
    # Check for valid local data
    if is_local_data_valid():
        st.write("Using cached local data.")
        st.session_state.data = load_local_data(filename)
    else:
        # Fetch data if local data is invalid
        if st.session_state.hopsworks_project is None:
            st.write("Initializing Hopsworks connection...")
            st.session_state.hopsworks_project = connect_to_hopsworks()
            st.success("Connected to Hopsworks!")
        
        project = st.session_state.hopsworks_project
        data = fetch_data_from_feature_group(project, "predictions", 1)
        print(data.head())
        filepath = save_data_locally(data, "./data")
        st.session_state.data = data
        st.success(f"Data fetched and saved locally at {filepath}")

    # Display data and graphs
    if st.session_state.data is not None:
        plot_graphs(st.session_state.data)

main()

# Visa alla busslinjer? Söka?
    # Hur se riktning?
# Filtrera på busslinje och riktning
# Filtrera på tid 
    # Ska användaren ange tid
# Se alla unika trip ids
# Mappa position till stop
# Visa någon sorts graf för alla bussar inom den tiden
    # Ska det vara för alla stopp eller bara de som användaren angivit att den ska åka