Spaces:
Running
Running
init commit
Browse files- app.py +147 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Optional, Tuple
|
2 |
+
|
3 |
+
import faiss
|
4 |
+
import angle_emb
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from tqdm import tqdm
|
8 |
+
from datasets import Dataset
|
9 |
+
|
10 |
+
|
11 |
+
class FlickrAngleSearch:
|
12 |
+
def __init__(self, model_name: str = "WhereIsAI/UAE-Large-V1", device: str = "cuda:0"):
|
13 |
+
"""Initialize the search engine with model and empty index"""
|
14 |
+
self.model = angle_emb.AnglE(model_name, pooling_strategy='cls', device=device)
|
15 |
+
self._index: Optional[faiss.IndexFlatIP] = None
|
16 |
+
self.captions: Optional[List[str]] = None
|
17 |
+
self.caption2image: Optional[Dict[str, int]] = None
|
18 |
+
self.ds: Optional[Dataset] = None
|
19 |
+
|
20 |
+
def index(self, dataset: Dataset) -> "FlickrAngleSearch":
|
21 |
+
"""Build the search index from a dataset"""
|
22 |
+
self.ds = dataset
|
23 |
+
|
24 |
+
# Extract unique captions and build caption->image mapping
|
25 |
+
captions: List[str] = []
|
26 |
+
caption2image: Dict[str, int] = {}
|
27 |
+
for i, example in enumerate(tqdm(dataset)):
|
28 |
+
for caption in example['caption']:
|
29 |
+
if caption not in caption2image:
|
30 |
+
captions.append(caption)
|
31 |
+
caption2image[caption] = i
|
32 |
+
|
33 |
+
self.captions = captions
|
34 |
+
self.caption2image = caption2image
|
35 |
+
|
36 |
+
# Encode captions
|
37 |
+
print(f"Encoding {len(captions)} unique captions...")
|
38 |
+
caption_embeddings = self.encode(captions)
|
39 |
+
|
40 |
+
# Build FAISS index
|
41 |
+
dimension = caption_embeddings.shape[1]
|
42 |
+
self._index = faiss.IndexFlatIP(dimension)
|
43 |
+
self._index.add(caption_embeddings)
|
44 |
+
|
45 |
+
return self
|
46 |
+
|
47 |
+
@classmethod
|
48 |
+
def from_preindexed(cls, index_path: str, captions_path: str, caption2image_path: str, dataset: Dataset, device: str = "cpu") -> "FlickrAngleSearch":
|
49 |
+
"""Load a pre-built index and mappings"""
|
50 |
+
instance = cls(device=device)
|
51 |
+
instance._index = faiss.read_index(index_path)
|
52 |
+
instance.captions = torch.load(captions_path)
|
53 |
+
instance.caption2image = torch.load(caption2image_path)
|
54 |
+
instance.ds = dataset
|
55 |
+
return instance
|
56 |
+
|
57 |
+
def save_index(self, index_path: str, captions_path: str, caption2image_path: str) -> None:
|
58 |
+
"""Save the index and mappings to disk"""
|
59 |
+
faiss.write_index(self._index, index_path)
|
60 |
+
torch.save(self.captions, captions_path)
|
61 |
+
torch.save(self.caption2image, caption2image_path)
|
62 |
+
|
63 |
+
def encode(self, texts: List[str], batch_size: int = 32) -> np.ndarray:
|
64 |
+
"""Encode a list of texts to embeddings"""
|
65 |
+
embeddings: List[np.ndarray] = []
|
66 |
+
for i in tqdm(range(0, len(texts), batch_size), desc="Encoding texts"):
|
67 |
+
batch = texts[i:i + batch_size]
|
68 |
+
with torch.no_grad():
|
69 |
+
embs = self.model.encode(batch, to_numpy=True, device=self.model.device)
|
70 |
+
embeddings.extend(embs)
|
71 |
+
|
72 |
+
return np.stack(embeddings)
|
73 |
+
|
74 |
+
def search(self, query: str, k: int = 5) -> List[Tuple[float, str, int]]:
|
75 |
+
"""
|
76 |
+
Search for the top-k most relevant captions and their corresponding images
|
77 |
+
|
78 |
+
Args:
|
79 |
+
query: Text query to search for
|
80 |
+
k: Number of results to return
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
List of (score, caption, image_index) tuples
|
84 |
+
"""
|
85 |
+
# Encode the query text
|
86 |
+
query_embedding = self.encode([query])
|
87 |
+
|
88 |
+
# Search the index
|
89 |
+
scores, indices = self._index.search(query_embedding, k)
|
90 |
+
|
91 |
+
# Get the results
|
92 |
+
results: List[Tuple[float, str, int]] = []
|
93 |
+
for score, idx in zip(scores[0], indices[0]):
|
94 |
+
caption = self.captions[idx]
|
95 |
+
image_idx = self.caption2image[caption]
|
96 |
+
results.append((float(score), caption, image_idx))
|
97 |
+
|
98 |
+
return results
|
99 |
+
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
import os
|
103 |
+
import gradio as gr
|
104 |
+
from datasets import load_dataset
|
105 |
+
from huggingface_hub import snapshot_download
|
106 |
+
|
107 |
+
local_dir = snapshot_download(repo_id='WhereIsAI/angle-flickr-index')
|
108 |
+
|
109 |
+
ds = load_dataset("nlphuji/flickr30k", split='test')
|
110 |
+
search = FlickrAngleSearch.from_preindexed(
|
111 |
+
os.path.join(local_dir, 'index.faiss'),
|
112 |
+
os.path.join(local_dir, 'captions.pt'),
|
113 |
+
os.path.join(local_dir, 'caption2image.pt'),
|
114 |
+
ds,
|
115 |
+
device='cpu'
|
116 |
+
)
|
117 |
+
|
118 |
+
def search_and_display(query, num_results=5):
|
119 |
+
results = search.search(query, k=num_results)
|
120 |
+
images = []
|
121 |
+
captions = []
|
122 |
+
similarities = []
|
123 |
+
|
124 |
+
for similarity, caption, image_idx in results:
|
125 |
+
image = ds[image_idx]['image']
|
126 |
+
images.append(image)
|
127 |
+
captions.append(caption)
|
128 |
+
similarities.append(f"{similarity:.4f}")
|
129 |
+
|
130 |
+
return images, captions, similarities
|
131 |
+
|
132 |
+
demo = gr.Interface(
|
133 |
+
fn=search_and_display,
|
134 |
+
inputs=[
|
135 |
+
gr.Textbox(label="Search Query"),
|
136 |
+
gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Number of Results")
|
137 |
+
],
|
138 |
+
outputs=[
|
139 |
+
gr.Gallery(label="Top Results"),
|
140 |
+
gr.Dataframe(headers=["Caption"], label="Captions"),
|
141 |
+
gr.Dataframe(headers=["Similarity Score"], label="Similarity Scores")
|
142 |
+
],
|
143 |
+
title="Flickr Image Search",
|
144 |
+
description="Search through Flickr images using natural language queries"
|
145 |
+
)
|
146 |
+
|
147 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
datasets
|
3 |
+
faiss-cpu
|
4 |
+
gradio
|
5 |
+
huggingface-hub
|
6 |
+
angle-emb
|