ihsan66 commited on
Commit
2c1198d
1 Parent(s): f2bf1fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -6
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import streamlit as st
2
- from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, AutoModelForTokenClassification, AutoModelForCausalLM
3
  import pandas as pd
4
 
5
  # Uygulama sayfa ayarları
@@ -52,10 +52,10 @@ def load_pipeline(model_name, task_type):
52
  # Görev ve modele göre pipeline yükleme
53
  model_dict = {
54
  "Metin Sınıflandırma": "nlptown/bert-base-multilingual-uncased-sentiment",
55
- "Metin Analizi": "dbmdz/bert-base-turkish-cased", # Türkçe model
56
  "Duygu Analizi": "cardiffnlp/twitter-roberta-base-sentiment",
57
  "Metin Oluşturma": "gpt2",
58
- "Varlık Tanıma": "dbmdz/bert-base-turkish-cased" # Türkçe NER model
59
  }
60
 
61
  pipeline_model = load_pipeline(model_dict[task], task)
@@ -102,8 +102,23 @@ if st.button("Çalıştır") and input_text:
102
  output = pipeline_model(input_text)
103
 
104
  # Process entities
105
- processed_entities = process_entities(output, input_text)
106
- df = pd.DataFrame(processed_entities)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
  st.subheader("Tanımlanan Varlıklar")
108
  st.dataframe(df)
109
 
@@ -129,7 +144,7 @@ if st.button("Çalıştır") and input_text:
129
  formatted_text += original_text[last_end:]
130
  return formatted_text
131
 
132
- formatted_text = format_text(processed_entities, input_text)
133
  st.subheader("Analiz Edilen Metin")
134
  st.markdown(f"<p>{formatted_text}</p>", unsafe_allow_html=True)
135
  elif task == "Metin Oluşturma":
 
1
  import streamlit as st
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification, AutoModelForSequenceClassification, AutoModelForCausalLM
3
  import pandas as pd
4
 
5
  # Uygulama sayfa ayarları
 
52
  # Görev ve modele göre pipeline yükleme
53
  model_dict = {
54
  "Metin Sınıflandırma": "nlptown/bert-base-multilingual-uncased-sentiment",
55
+ "Metin Analizi": "dbmdz/bert-base-turkish-cased",
56
  "Duygu Analizi": "cardiffnlp/twitter-roberta-base-sentiment",
57
  "Metin Oluşturma": "gpt2",
58
+ "Varlık Tanıma": "dbmdz/bert-base-turkish-cased"
59
  }
60
 
61
  pipeline_model = load_pipeline(model_dict[task], task)
 
102
  output = pipeline_model(input_text)
103
 
104
  # Process entities
105
+ processed_entities = []
106
+ for entity in output:
107
+ word = entity['word']
108
+ label = entity['entity']
109
+ score = entity['score']
110
+ start = entity['start']
111
+ end = entity['end']
112
+ processed_entities.append({
113
+ 'word': word,
114
+ 'label': label,
115
+ 'score': score,
116
+ 'start': start,
117
+ 'end': end
118
+ })
119
+
120
+ # Aggregate entities
121
+ df = pd.DataFrame(process_entities(processed_entities, input_text))
122
  st.subheader("Tanımlanan Varlıklar")
123
  st.dataframe(df)
124
 
 
144
  formatted_text += original_text[last_end:]
145
  return formatted_text
146
 
147
+ formatted_text = format_text(process_entities(processed_entities, input_text), input_text)
148
  st.subheader("Analiz Edilen Metin")
149
  st.markdown(f"<p>{formatted_text}</p>", unsafe_allow_html=True)
150
  elif task == "Metin Oluşturma":