Update app.py
Browse files
app.py
CHANGED
@@ -101,52 +101,59 @@ if st.button("Çalıştır") and input_text:
|
|
101 |
elif task == "Metin Analizi":
|
102 |
output = pipeline_model(input_text)
|
103 |
|
104 |
-
#
|
105 |
-
|
106 |
-
for entity in output:
|
107 |
-
word = entity['word']
|
108 |
-
label = entity['entity']
|
109 |
-
score = entity['score']
|
110 |
-
start = entity['start']
|
111 |
-
end = entity['end']
|
112 |
-
processed_entities.append({
|
113 |
-
'word': word,
|
114 |
-
'label': label,
|
115 |
-
'score': score,
|
116 |
-
'start': start,
|
117 |
-
'end': end
|
118 |
-
})
|
119 |
-
|
120 |
-
# Aggregate entities
|
121 |
-
df = pd.DataFrame(process_entities(processed_entities, input_text))
|
122 |
-
st.subheader("Tanımlanan Varlıklar")
|
123 |
-
st.dataframe(df)
|
124 |
-
|
125 |
-
# Metni formatla
|
126 |
-
def format_text(text_data, original_text):
|
127 |
-
formatted_text = ""
|
128 |
-
last_end = 0
|
129 |
-
for item in text_data:
|
130 |
-
if item['start'] > last_end:
|
131 |
-
formatted_text += original_text[last_end:item['start']]
|
132 |
-
word = item['word']
|
133 |
-
label = item['label']
|
134 |
-
score = item['score']
|
135 |
-
if label.startswith('I-PER'):
|
136 |
-
color = 'blue'
|
137 |
-
elif label.startswith('I-MISC'):
|
138 |
-
color = 'green'
|
139 |
-
else:
|
140 |
-
color = 'gray'
|
141 |
-
formatted_text += f"<span style='color:{color}; font-weight: bold;'>{word} ({label}, {score:.2f})</span>"
|
142 |
-
last_end = item['end']
|
143 |
-
if last_end < len(original_text):
|
144 |
-
formatted_text += original_text[last_end:]
|
145 |
-
return formatted_text
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
elif task == "Metin Oluşturma":
|
151 |
output = pipeline_model(input_text, max_length=100, num_return_sequences=1)
|
152 |
st.subheader("Oluşturulan Metin")
|
|
|
101 |
elif task == "Metin Analizi":
|
102 |
output = pipeline_model(input_text)
|
103 |
|
104 |
+
# Çıktıyı gözlemleme
|
105 |
+
st.write(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
# Varlıkları işlemek için uygun formatı kontrol edin
|
108 |
+
if len(output) > 0 and 'entity' in output[0]:
|
109 |
+
# Process entities
|
110 |
+
processed_entities = []
|
111 |
+
for entity in output:
|
112 |
+
word = entity['word']
|
113 |
+
label = entity['entity']
|
114 |
+
score = entity['score']
|
115 |
+
start = entity['start']
|
116 |
+
end = entity['end']
|
117 |
+
processed_entities.append({
|
118 |
+
'word': word,
|
119 |
+
'label': label,
|
120 |
+
'score': score,
|
121 |
+
'start': start,
|
122 |
+
'end': end
|
123 |
+
})
|
124 |
+
|
125 |
+
# Aggregate entities
|
126 |
+
df = pd.DataFrame(process_entities(processed_entities, input_text))
|
127 |
+
st.subheader("Tanımlanan Varlıklar")
|
128 |
+
st.dataframe(df)
|
129 |
+
|
130 |
+
# Metni formatla
|
131 |
+
def format_text(text_data, original_text):
|
132 |
+
formatted_text = ""
|
133 |
+
last_end = 0
|
134 |
+
for item in text_data:
|
135 |
+
if item['start'] > last_end:
|
136 |
+
formatted_text += original_text[last_end:item['start']]
|
137 |
+
word = item['word']
|
138 |
+
label = item['label']
|
139 |
+
score = item['score']
|
140 |
+
if label.startswith('I-PER'):
|
141 |
+
color = 'blue'
|
142 |
+
elif label.startswith('I-MISC'):
|
143 |
+
color = 'green'
|
144 |
+
else:
|
145 |
+
color = 'gray'
|
146 |
+
formatted_text += f"<span style='color:{color}; font-weight: bold;'>{word} ({label}, {score:.2f})</span>"
|
147 |
+
last_end = item['end']
|
148 |
+
if last_end < len(original_text):
|
149 |
+
formatted_text += original_text[last_end:]
|
150 |
+
return formatted_text
|
151 |
+
|
152 |
+
formatted_text = format_text(process_entities(processed_entities, input_text), input_text)
|
153 |
+
st.subheader("Analiz Edilen Metin")
|
154 |
+
st.markdown(f"<p>{formatted_text}</p>", unsafe_allow_html=True)
|
155 |
+
else:
|
156 |
+
st.error("Varlık analizi sonucu beklenen formatta değil.")
|
157 |
elif task == "Metin Oluşturma":
|
158 |
output = pipeline_model(input_text, max_length=100, num_return_sequences=1)
|
159 |
st.subheader("Oluşturulan Metin")
|