Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, AutoModelForTokenClassification, AutoModelWithLMHead
|
3 |
import pandas as pd
|
4 |
import spacy
|
5 |
-
import torchaudio
|
6 |
|
7 |
st.set_page_config(layout="wide")
|
8 |
|
@@ -16,21 +15,19 @@ Birinci Dünya Savaşı sırasında Osmanlı ordusunda görev yapan Atatürk, Ç
|
|
16 |
# Uygulama başlığı
|
17 |
st.title("NLP Toolkit")
|
18 |
|
|
|
19 |
# Model seçim
|
20 |
-
model_list =
|
21 |
-
|
22 |
'Metin Analizi': 'savasy/bert-base-turkish-ner-cased',
|
23 |
'Duygu Analizi': 'akdeniz27/xlm-roberta-base-turkish-ner',
|
24 |
-
'Metin Oluşturma': 'dbmdz/bert-base-turkish-cased'
|
25 |
-
|
26 |
-
}
|
27 |
-
|
28 |
-
st.sidebar.header("Select Model")
|
29 |
-
model_checkpoint = st.sidebar.radio("", list(model_list.values()), format_func=lambda x: list(model_list.keys())[list(model_list.values()).index(x)])
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
-
st.sidebar.write("For details of models: 'https://huggingface.co/WhiteAngelss/
|
34 |
st.sidebar.write("")
|
35 |
|
36 |
if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
|
@@ -79,10 +76,6 @@ def load_pipeline(model_name, task_type):
|
|
79 |
model = AutoModelWithLMHead.from_pretrained(model_name)
|
80 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
81 |
return pipeline('text-generation', model=model, tokenizer=tokenizer)
|
82 |
-
elif task_type == "Ses Tanıma":
|
83 |
-
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
84 |
-
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
85 |
-
return pipeline('automatic-speech-recognition', model=model, tokenizer=tokenizer)
|
86 |
|
87 |
@st.cache_resource
|
88 |
def setModel(model_checkpoint, aggregation):
|
@@ -164,15 +157,4 @@ if Run_Button and input_text != "":
|
|
164 |
output = pipeline_model(input_text, max_length=50, num_return_sequences=1)
|
165 |
st.subheader(f"{task} Sonuçları")
|
166 |
for idx, item in enumerate(output):
|
167 |
-
st.write(f"Öneri {idx+1}: {item['generated_text']}")
|
168 |
-
|
169 |
-
elif task == "Ses Tanıma":
|
170 |
-
st.subheader("Ses Dosyası Yükle")
|
171 |
-
audio_file = st.file_uploader("Ses Dosyası Seç", type=["wav", "mp3"])
|
172 |
-
|
173 |
-
if audio_file is not None:
|
174 |
-
waveform, sample_rate = torchaudio.load(audio_file)
|
175 |
-
asr_pipeline = load_pipeline(model_checkpoint, task)
|
176 |
-
transcription = asr_pipeline(waveform)
|
177 |
-
st.subheader("Transkripsiyon Sonuçları")
|
178 |
-
st.write(transcription["text"])
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, AutoModelForTokenClassification, AutoModelWithLMHead
|
3 |
import pandas as pd
|
4 |
import spacy
|
|
|
5 |
|
6 |
st.set_page_config(layout="wide")
|
7 |
|
|
|
15 |
# Uygulama başlığı
|
16 |
st.title("NLP Toolkit")
|
17 |
|
18 |
+
|
19 |
# Model seçim
|
20 |
+
model_list = [
|
21 |
+
'Metin Sınıflandırma': 'dbmdz/bert-base-turkish-cased',
|
22 |
'Metin Analizi': 'savasy/bert-base-turkish-ner-cased',
|
23 |
'Duygu Analizi': 'akdeniz27/xlm-roberta-base-turkish-ner',
|
24 |
+
'Metin Oluşturma': 'dbmdz/bert-base-turkish-cased'
|
25 |
+
]
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
st.sidebar.header("Select NER Model")
|
28 |
+
model_checkpoint = st.sidebar.radio("", model_list)
|
29 |
|
30 |
+
st.sidebar.write("For details of models: 'https://huggingface.co/WhiteAngelss/")
|
31 |
st.sidebar.write("")
|
32 |
|
33 |
if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
|
|
|
76 |
model = AutoModelWithLMHead.from_pretrained(model_name)
|
77 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
78 |
return pipeline('text-generation', model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
79 |
|
80 |
@st.cache_resource
|
81 |
def setModel(model_checkpoint, aggregation):
|
|
|
157 |
output = pipeline_model(input_text, max_length=50, num_return_sequences=1)
|
158 |
st.subheader(f"{task} Sonuçları")
|
159 |
for idx, item in enumerate(output):
|
160 |
+
st.write(f"Öneri {idx+1}: {item['generated_text']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|