Spaces:
Running
Running
File size: 10,821 Bytes
5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b 82c01c8 ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 5414a3b ed8fac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import json
import time
from pathlib import Path
from typing import Literal
import requests
import streamlit as st
from chunknorris.chunkers import MarkdownChunker
from chunknorris.parsers import (
AbstractParser,
CSVParser,
DocxParser,
ExcelParser,
HTMLParser,
MarkdownParser,
PdfParser,
)
from chunknorris.pipelines import PdfPipeline
from streamlit import session_state as ss
from streamlit.runtime.uploaded_file_manager import UploadedFile, UploadedFileRec
st.set_page_config(
layout="wide",
page_icon="🔪",
page_title="ChunkNorris demo",
menu_items={
"Report a bug": "https://github.com/wikit-ai/chunknorris/issues",
"About": "https://wikit-ai.github.io/chunknorris/",
},
)
LOGGER = st.empty()
SAMPLE_FILE = {
"sample PDF - 264 pages": "https://raw.githubusercontent.com/wikit-ai/chunknorris/refs/heads/main/docs/examples/example_data/sample.pdf",
"sample PDF - 16 pages": "https://raw.githubusercontent.com/wikit-ai/chunknorris/refs/heads/main/docs/examples/example_data/sample2.pdf",
"sample MD": "https://raw.githubusercontent.com/wikit-ai/chunknorris/refs/heads/main/README.md",
"sample XLSX": "https://raw.githubusercontent.com/wikit-ai/chunknorris/refs/heads/main/docs/examples/example_data/sample.xlsx",
}
if "parsing_time" not in ss:
ss.parsing_time = 0
if "parsed_md" not in ss:
ss.parsed_md = ""
if "chunks" not in ss:
ss.chunks = [] # type: ignore | list[Chunk]
def get_parser(fileext: str) -> AbstractParser:
"""Get the pipeline for the given filename."""
match fileext:
case ".md":
parser = MarkdownParser()
case ".html":
parser = HTMLParser()
case ".pdf":
parser = PdfParser(
use_ocr="never",
)
case ".docx":
parser = DocxParser()
case ".xls" | ".xlsx" | ".xlsm" | ".xlsb" | ".odf" | ".ods" | ".odt":
parser = ExcelParser()
case ".csv":
parser = CSVParser()
case _:
raise ValueError("File format not supported by ChunkNorris")
return parser
def get_md_chunker() -> MarkdownChunker:
"""Considering arguments set, returns the md chunker."""
return MarkdownChunker(
max_headers_to_use=ss.max_headers_to_use,
max_chunk_word_count=ss.max_chunk_word_count,
hard_max_chunk_word_count=ss.hard_max_chunk_word_count,
min_chunk_word_count=ss.min_chunk_word_count,
)
def parse_and_chunk(uploaded_file: UploadedFile | None):
"""Parse and chunk the file."""
if uploaded_file is None:
log("Please upload a file.", "warning")
return
log("Parsing and chunking...", "info")
try:
fileext = Path(uploaded_file.name).suffix.lower()
parser = get_parser(fileext)
start_time = time.perf_counter()
match fileext:
case ".pdf":
md_doc = parser.parse_string(uploaded_file.getvalue())
chunker = PdfPipeline(parser, get_md_chunker())
chunks = chunker._get_chunks_using_strategy() # type: ignore
case ".xlsx":
md_doc = parser.parse_string(uploaded_file.getvalue())
chunker = get_md_chunker()
chunks = chunker.chunk(md_doc)
case _:
md_doc = parser.parse_string(uploaded_file.getvalue().decode("utf-8"))
chunker = get_md_chunker()
chunks = chunker.chunk(md_doc)
ss.parsing_time = time.perf_counter() - start_time
ss.parsed_md = md_doc.to_string()
ss.chunks = chunks
log(
f"Parsing and chunking took {round(ss.parsing_time, 4)} seconds.", "success"
)
except Exception as e:
log(f"Error when parsing file.", "warning")
print(e)
return
def save_parsed_md():
"""Save the parsed markdown string to a md file."""
return ss.parsed_md.encode("utf-8")
def save_chunks():
"""Save the parsed chunks to a json file."""
return json.dumps(
[
{
k: v
for k, v in chunk.model_dump().items()
if k not in ["headers", "content"]
}
| {"text": chunk.get_text(prepend_headers=ss.prepend_headers_to_chunks)}
for chunk in ss.chunks
],
indent=4,
ensure_ascii=False,
).encode("utf-8")
def log(message: str, log_type: Literal["success", "warning", "info"] = "info"):
"""Display a warning message."""
match log_type:
case "warning":
LOGGER.warning(message, icon="⚠️")
case "success":
LOGGER.success(message, icon="✅")
case "info":
LOGGER.info(message, icon="ℹ️")
def load_sample_file(url: str):
"""Get the file from url"""
response = requests.get(url)
if response.status_code == 200:
return UploadedFile(
record=UploadedFileRec(
file_id="sample_file",
name=url.split("/")[-1],
data=response.content,
type="application/octet-stream",
),
file_urls=[url],
)
else:
print(response.status_code, response.content)
st.error("Failed to get data.")
return None
st.title("ChunkNorris.")
st.subheader("*Fast, smart, lightweight document chunking.*")
st.sidebar.header("Chunking settings")
st.sidebar.markdown(
"| [Documentation](https://wikit-ai.github.io/chunknorris/) | [Tutorials](https://wikit-ai.github.io/chunknorris/examples/) | [Repo](https://github.com/wikit-ai/chunknorris) |"
)
st.sidebar.select_slider(
label="Max header level to consider for chunking",
options=["h1", "h2", "h3", "h4", "h5", "h6"],
value="h4",
key="max_headers_to_use",
help="Max section header level to consider for chunking. Lower level headers won't be used to split a chunk into smaller chunks.",
label_visibility="visible",
)
st.sidebar.slider(
label="Maximum words per chunk",
value=250,
min_value=0,
max_value=3000,
step=50,
key="max_chunk_word_count",
help="Maximum number of words per chunk. If a chunk is bigger than this, chunk is split using subsection headers if any are available.",
label_visibility="visible",
)
st.sidebar.slider(
label="Hard maximum words per chunk",
value=400,
min_value=100,
max_value=3000,
step=50,
key="hard_max_chunk_word_count",
help="The hard maximum number of words per chunk. If a chunk is bigger than this, chunk is split using newlines, still trying to preverse code blocks or tables integrity.",
label_visibility="visible",
)
st.sidebar.slider(
label="Minumum words per chunk",
value=10,
min_value=0,
max_value=50,
step=1,
key="min_chunk_word_count",
help="The minimum words a chunk must have to avoid being discarded.",
label_visibility="visible",
)
st.sidebar.checkbox(
"Prepend headers to chunk's text",
value=True,
key="prepend_headers_to_chunks",
label_visibility="visible",
help="Whether or not all the parent headers should be prepended to the chunk's text content. Might improve retrieval performance of the chunk as it preserves context.",
)
_, col1, col2, _ = st.columns([0.1, 0.5, 0.3, 0.1])
with col1:
uploaded_file = st.file_uploader(
"Upload your own file...",
type=[
"md",
"html",
"pdf",
"docx",
"xls",
"xlsx",
"xlsm",
"xlsb",
"odf",
"ods",
"odt",
"csv",
],
)
with col2:
sample_file = st.selectbox(
"... Or choose a sample file from the list.",
options=list(SAMPLE_FILE.keys()),
index=None,
)
if sample_file is not None:
st.markdown(f"[View file]({SAMPLE_FILE[sample_file]})")
uploaded_file = load_sample_file(SAMPLE_FILE[sample_file])
if uploaded_file is not None:
parse_and_chunk(uploaded_file)
st.sidebar.button(
"Parse & Chunk",
on_click=parse_and_chunk,
args=(uploaded_file,),
type="primary",
use_container_width=True,
)
else:
st.sidebar.button(
"Parse & Chunk",
on_click=log,
args=(
"You must upload a file first.",
"warning",
),
type="secondary",
use_container_width=True,
)
ss.parsed_md = ""
ss.chunks = []
col1, col2 = st.columns(2)
with col1:
if uploaded_file and ss.parsed_md:
file_parsed_md = save_parsed_md()
cola, colb = st.columns([0.25, 0.75])
with colb:
st.subheader("⚙️ Parsed Document", divider="blue")
with cola:
st.markdown("\n")
st.download_button(
label="⬇️ Download",
data=file_parsed_md,
file_name="chunknorris_parsed_document.md",
mime="text/markdown",
use_container_width=True,
)
if Path(uploaded_file.name).suffix.lower() == ".pdf":
st.info(
"For the purpose of this demo, OCR on pdf documents is deactivated.",
icon="ℹ️",
)
with st.expander("Parsed document", expanded=True):
with st.container(height=600, border=False):
st.markdown(ss.parsed_md)
with col2:
if uploaded_file and ss.chunks: # type: ignore | list[Chunk]
file_chunks = save_chunks()
cola, colb = st.columns([0.25, 0.75])
with colb:
st.subheader("📦 Chunks", divider="blue")
with cola:
st.markdown("\n")
st.download_button(
label="⬇️ Download",
data=file_chunks,
file_name="chunknorris_chunks.json",
mime="application/json",
use_container_width=True,
)
with st.container(border=False):
for i, chunk in enumerate(ss.chunks): # type: ignore | list[Chunk]
with st.expander(f"Chunk {i+1}", expanded=False):
with st.container(height=300, border=False):
st.markdown(
chunk.get_text(prepend_headers=ss.prepend_headers_to_chunks) # type: ignore | Chunk.get_text()
)
|