|
import spaces |
|
import gradio as gr |
|
import torch |
|
from diffusers import ( |
|
AutoencoderKL, |
|
EulerAncestralDiscreteScheduler, |
|
) |
|
from diffusers.utils import load_image |
|
from replace_bg.model.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline |
|
from replace_bg.model.controlnet import ControlNetModel |
|
from replace_bg.utilities import resize_image, remove_bg_from_image, paste_fg_over_image, get_control_image_tensor |
|
|
|
controlnet = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-BG-Gen", torch_dtype=torch.float16) |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet, torch_dtype=torch.float16, vae=vae).to('cuda:0') |
|
pipe.load_lora_weights(".", weight_name="77d3c43e-96be-4ecf-b102-4acf0d1abe09_4092_678_webui.safetensors") |
|
|
|
pipe.scheduler = EulerAncestralDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
num_train_timesteps=1000, |
|
steps_offset=1 |
|
) |
|
|
|
|
|
@spaces.GPU |
|
def generate_(prompt, negative_prompt, control_tensor, num_steps, controlnet_conditioning_scale, seed): |
|
generator = torch.Generator("cuda").manual_seed(seed) |
|
gen_img = pipe( |
|
negative_prompt=negative_prompt, |
|
prompt=prompt, |
|
controlnet_conditioning_scale=float(controlnet_conditioning_scale), |
|
num_inference_steps=num_steps, |
|
image = control_tensor, |
|
cross_attention_kwargs={"scale": 0.9}, |
|
generator=generator |
|
).images[0] |
|
|
|
return gen_img |
|
|
|
@spaces.GPU |
|
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed): |
|
|
|
image = resize_image(input_image) |
|
mask = remove_bg_from_image(image) |
|
control_tensor = get_control_image_tensor(pipe.vae, image, mask) |
|
|
|
gen_image = generate_(prompt, negative_prompt, control_tensor, num_steps, controlnet_conditioning_scale, seed) |
|
result_image = paste_fg_over_image(gen_image, image, mask) |
|
|
|
return result_image |
|
|
|
|
|
|
|
block = gr.Blocks().queue() |
|
|
|
with block: |
|
gr.Markdown("## HBS_V2") |
|
gr.HTML(''' |
|
<p style="margin-bottom: 10px; font-size: 94%"> |
|
Human Body Segmentation model v2 developed by <a href='https://github.com/WildanJR09' target='_blank'><b>WildanJR</b></a>, Designed to effectively separate foreground from background in a range of categories and image types. And then generate image background from user input.<br> |
|
This model has been trained on a carefully selected dataset, which includes: general stock images, e-commerce, gaming, and advertising content, making it suitable for commercial use cases powering enterprise content creation at scale. The accuracy, efficiency, and versatility currently rival leading source-available models. It is ideal where content safety, legally licensed datasets, and bias mitigation are paramount. For test upload your image and type query then wait. |
|
</p> |
|
''') |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(sources='upload', type="pil", label="Upload", elem_id="image_upload", height=600) |
|
prompt = gr.Textbox(label="Prompt") |
|
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") |
|
num_steps = gr.Slider(label="Number of steps", minimum=10, maximum=100, value=30, step=1) |
|
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,) |
|
run_button = gr.Button(value="Generate") |
|
|
|
|
|
with gr.Column(): |
|
result_gallery = gr.Image(label='Output', type="pil", show_label=True, elem_id="output-img") |
|
|
|
ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed] |
|
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["./jisoo.png"], |
|
], |
|
fn=process, |
|
inputs=[input_image], |
|
cache_examples=False, |
|
) |
|
|
|
|
|
block.launch(debug = True) |