File size: 8,513 Bytes
b139995
 
 
 
4fd4a46
b139995
 
1df2a85
b139995
22a2526
 
 
b139995
 
 
b5731be
 
d3c591a
22a2526
1df2a85
 
 
b5731be
22a2526
 
b5731be
 
22a2526
b5731be
 
 
 
 
b139995
 
 
9077960
b139995
b5731be
b139995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5731be
b139995
 
 
 
 
9077960
b139995
 
 
 
 
 
 
b5731be
 
 
 
 
 
 
 
b139995
 
 
 
 
 
 
 
 
 
b5731be
b139995
 
 
 
 
 
b5731be
b139995
d3c591a
 
 
 
b139995
 
 
 
 
 
 
 
b5731be
 
 
 
 
 
 
 
b139995
 
 
 
 
 
 
 
 
 
b5731be
b139995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5731be
b139995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fd4a46
b139995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fd4a46
 
b139995
 
 
 
 
 
43a3559
b139995
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import pickle
import json
import os

import gradio as gr
from PIL import Image
import numpy as np
import jax

from gradio_dualvision import DualVisionApp
from gradio_dualvision.gradio_patches.radio import Radio
from huggingface_hub import hf_hub_download
from model import build_thera
from super_resolve import process

REPO_ID_EDSR = "prs-eth/thera-edsr-pro"
REPO_ID_RDN = "prs-eth/thera-rdn-pro"
MAX_SIZE = 600

print(f"JAX devices: {jax.devices()}")
print(f"JAX device type: {jax.devices()[0].device_kind}")

model_path = hf_hub_download(repo_id=REPO_ID_EDSR, filename="model.pkl")
with open(model_path, 'rb') as fh:
    check = pickle.load(fh)
    params_edsr, backbone, size = check['model'], check['backbone'], check['size']
    model_edsr = build_thera(3, backbone, size)

model_path = hf_hub_download(repo_id=REPO_ID_RDN, filename="model.pkl")
with open(model_path, 'rb') as fh:
    check = pickle.load(fh)
    params_rdn, backbone, size = check['model'], check['backbone'], check['size']
    model_rdn = build_thera(3, backbone, size)


class TheraApp(DualVisionApp):
    DEFAULT_SCALE = 3.92
    DEFAULT_DO_ENSEMBLE = False
    DEFAULT_MODEL = 'edsr'

    def make_header(self):
        gr.Markdown(
            """
            ## Thera: Aliasing-Free Arbitrary-Scale Super-Resolution with Neural Heat Fields
            <p align="center">
            <a title="Website" href="https://therasr.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/badge/%E2%99%A5%20Project%20-Website-blue">
            </a>
            <a title="arXiv" href="https://arxiv.org/pdf/2311.17643" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/badge/%F0%9F%93%84%20Read%20-Paper-AF3436">
            </a>
            <a title="Github" href="https://github.com/prs-eth/thera" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/github/stars/prs-eth/thera?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
            </a>
            </p>                    
            <p align="center" style="margin-top: 0px;">
                <strong>Upload a photo or select an example below to do arbitrary-scale super-resolution in real time!</strong>
            </p>
        """
        )

    def build_user_components(self):
        with gr.Row():
            scale = gr.Slider(
                label="Scaling factor",
                minimum=1,
                maximum=6,
                step=0.01,
                value=self.DEFAULT_SCALE,
            )
            model = gr.Radio(
                [
                    ("EDSR", 'edsr'),
                    ("RDN", 'rdn'),
                ],
                label="Backbone",
                value=self.DEFAULT_MODEL,
            )
            do_ensemble = gr.Radio(
                [
                    ("No", False),
                    ("Yes", True),
                ],
                label="Do Ensemble",
                value=self.DEFAULT_DO_ENSEMBLE,
            )
        return {
            "scale": scale,
            "model": model,
            "do_ensemble": do_ensemble,
        }

    def process(self, image_in: Image.Image, **kwargs):
        scale = kwargs.get("scale", self.DEFAULT_SCALE)
        do_ensemble = kwargs.get("do_ensemble", self.DEFAULT_DO_ENSEMBLE)
        model = kwargs.get("model", self.DEFAULT_MODEL)

        if max(*image_in.size) > MAX_SIZE:
            raise gr.Error(f"We have currently limited the size of uploaded images to {MAX_SIZE}x{MAX_SIZE}"
                f" pixels, to enable a smooth experience to all users.")

        source = np.asarray(image_in) / 255.

        # determine target shape
        target_shape = (
            round(source.shape[0] * scale),
            round(source.shape[1] * scale),
        )

        if model == 'edsr':
            m, p = model_edsr, params_edsr
        elif model == 'rdn':
            m, p = model_rdn, params_rdn
        else:
            raise NotImplementedError('model:', model)

        out = process(source, m, p, target_shape, do_ensemble=do_ensemble)
        out = Image.fromarray(np.asarray(out))

        nearest = image_in.resize(out.size, Image.NEAREST)

        out_modalities = {
            "nearest": nearest,
            "out": out,
        }
        out_settings = {
            'scale': scale,
            'model': model,
            'do_ensemble': do_ensemble,
        }
        return out_modalities, out_settings

    def process_components(
        self, image_in, modality_selector_left, modality_selector_right, **kwargs
    ):
        if image_in is None:
            raise gr.Error("Input image is required")

        image_settings = {}
        if isinstance(image_in, str):
            image_settings_path = image_in + ".settings.json"
            if os.path.isfile(image_settings_path):
                with open(image_settings_path, "r") as f:
                    image_settings = json.load(f)
            image_in = Image.open(image_in).convert("RGB")
        else:
            if not isinstance(image_in, Image.Image):
                raise gr.Error(f"Input must be a PIL image, got {type(image_in)}")
            image_in = image_in.convert("RGB")
        image_settings.update(kwargs)

        results_dict, results_settings = self.process(image_in, **image_settings)

        if not isinstance(results_dict, dict):
            raise gr.Error(
                f"`process` must return a dict[str, PIL.Image]. Got type: {type(results_dict)}"
            )
        if len(results_dict) == 0:
            raise gr.Error("`process` did not return any modalities")
        for k, v in results_dict.items():
            if not isinstance(k, str):
                raise gr.Error(
                    f"Output dict must have string keys. Found key of type {type(k)}: {repr(k)}"
                )
            if k == self.key_original_image:
                raise gr.Error(
                    f"Output dict must not have an '{self.key_original_image}' key; it is reserved for the input"
                )
            if not isinstance(v, Image.Image):
                raise gr.Error(
                    f"Value for key '{k}' must be a PIL Image, got type {type(v)}"
                )
        if len(results_settings) != len(self.input_keys):
            raise gr.Error(
                f"Expected number of settings ({len(self.input_keys)}), returned ({len(results_settings)})"
            )
        if any(k not in results_settings for k in self.input_keys):
            raise gr.Error(f"Mismatching setgings keys")

        results_settings = {
            k: cls(**ctor_args, value=results_settings[k])
            for k, cls, ctor_args in zip(
                self.input_keys, self.input_cls, self.input_kwargs
            )
        }

        results_dict = {
            **results_dict,
            self.key_original_image: image_in,
        }

        results_state = [[v, k] for k, v in results_dict.items()]
        modalities = list(results_dict.keys())

        modality_left = (
            modality_selector_left
            if modality_selector_left in modalities
            else modalities[0]
        )
        modality_right = (
            modality_selector_right
            if modality_selector_right in modalities
            else modalities[1]
        )

        return [
            results_state,  # goes to a gr.Gallery
            [
                results_dict[modality_left],
                results_dict[modality_right],
            ],  # ImageSliderPlus
            Radio(
                choices=modalities,
                value=modality_left,
                label="Left",
                key="Left",
            ),
            Radio(
                choices=modalities if self.left_selector_visible else modalities[1:],
                value=modality_right,
                label="Right",
                key="Right",
            ),
            *results_settings.values(),
        ]


with TheraApp(
        title="Thera Arbitrary-Scale Super-Resolution",
        examples_path="files",
        examples_per_page=12,
        squeeze_canvas=True,
        advanced_settings_can_be_half_width=False,
        #spaces_zero_gpu_enabled=True,
) as demo:
    demo.queue(
        api_open=False,
    ).launch(
        server_name="0.0.0.0",
        server_port=7860,
    )