File size: 5,951 Bytes
b139995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright 2023-2025 Marigold Team, ETH Zürich. All rights reserved.
# This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
# See https://creativecommons.org/licenses/by-sa/4.0/ for details.
# --------------------------------------------------------------------------
# DualVision is a Gradio template app for image processing. It was developed
# to support the Marigold project. If you find this code useful, we kindly
# ask you to cite our most relevant papers.
# More information about Marigold:
#   https://marigoldmonodepth.github.io
#   https://marigoldcomputervision.github.io
# Efficient inference pipelines are now part of diffusers:
#   https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage
#   https://huggingface.co/docs/diffusers/api/pipelines/marigold
# Examples of trained models and live demos:
#   https://huggingface.co/prs-eth
# Related projects:
#   https://marigolddepthcompletion.github.io/
#   https://rollingdepth.github.io/
# Citation (BibTeX):
#   https://github.com/prs-eth/Marigold#-citation
#   https://github.com/prs-eth/Marigold-DC#-citation
#   https://github.com/prs-eth/rollingdepth#-citation
# --------------------------------------------------------------------------
import json
import os.path
import tempfile
from pathlib import Path
from typing import Union, Tuple, Optional

import numpy as np
from PIL import Image
from gradio import processing_utils
from gradio import utils
from gradio.data_classes import FileData, GradioRootModel, JsonData
from gradio_client import utils as client_utils
from gradio_imageslider import ImageSlider
from gradio_imageslider.imageslider import image_tuple, image_variants


class ImageSliderPlusData(GradioRootModel):
    root: Union[
        Tuple[FileData | None, FileData | None, JsonData | None],
        Tuple[FileData | None, FileData | None],
        None,
    ]


class ImageSliderPlus(ImageSlider):
    data_model = ImageSliderPlusData

    def as_example(self, value):
        return self.process_example_dims(value, 256, True)

    def _format_image(self, im: Image):
        if self.type != "filepath":
            raise ValueError("ImageSliderPlus can be only created with type='filepath'")
        if im is None:
            return im
        format = "png" #if im.mode == "I;16" else "webp"
        path = processing_utils.save_pil_to_cache(
            im, cache_dir=self.GRADIO_CACHE, format=format
        )
        self.temp_files.add(path)
        return path

    def _postprocess_image(self, y: image_variants):
        if isinstance(y, np.ndarray):
            format = "png" #if y.dtype == np.uint16 and y.squeeze().ndim == 2 else "webp"
            path = processing_utils.save_img_array_to_cache(
                y, cache_dir=self.GRADIO_CACHE, format=format
            )
        elif isinstance(y, Image.Image):
            format = "png" #if y.mode == "I;16" else "webp"
            path = processing_utils.save_pil_to_cache(
                y, cache_dir=self.GRADIO_CACHE, format=format
            )
        elif isinstance(y, (str, Path)):
            path = y if isinstance(y, str) else str(utils.abspath(y))
        else:
            raise ValueError("Cannot process this value as an Image")

        return path

    def postprocess(
        self,
        y: image_tuple,
    ) -> ImageSliderPlusData:
        if y is None:
            return ImageSliderPlusData(root=(None, None, None))

        settings = None
        if type(y[0]) is str:
            settings_candidate_path = y[0] + ".settings.json"
            if os.path.isfile(settings_candidate_path):
                with open(settings_candidate_path, "r") as fp:
                    settings = json.load(fp)

        return ImageSliderPlusData(
            root=(
                FileData(path=self._postprocess_image(y[0])),
                FileData(path=self._postprocess_image(y[1])),
                JsonData(settings),
            ),
        )

    def preprocess(self, x: ImageSliderPlusData) -> image_tuple:
        if x is None:
            return x

        out_0 = self._preprocess_image(x.root[0])
        out_1 = self._preprocess_image(x.root[1])

        if len(x.root) > 2 and x.root[2] is not None:
            with open(out_0 + ".settings.json", "w") as fp:
                json.dump(x.root[2].root, fp)

        return out_0, out_1

    @staticmethod
    def resize_and_save(image_path: str, max_dim: int, square: bool = False) -> str:
        img = Image.open(image_path).convert("RGB")
        if square:
            width, height = img.size
            min_side = min(width, height)
            left = (width - min_side) // 2
            top = (height - min_side) // 2
            right = left + min_side
            bottom = top + min_side
            img = img.crop((left, top, right, bottom))
        img.thumbnail((max_dim, max_dim))
        temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
        img.save(temp_file.name, "PNG")
        return temp_file.name

    def process_example_dims(
        self, input_data: tuple[str | Path | None] | None, max_dim: Optional[int] = None, square: bool = False
    ) -> image_tuple:
        if input_data is None:
            return None
        input_data = (str(input_data[0]), str(input_data[1]))
        if self.proxy_url or client_utils.is_http_url_like(input_data[0]):
            return input_data[0]
        if max_dim is not None:
            input_data = (
                self.resize_and_save(input_data[0], max_dim, square),
                self.resize_and_save(input_data[1], max_dim, square),
            )
        return (
            self.move_resource_to_block_cache(input_data[0]),
            self.move_resource_to_block_cache(input_data[1]),
        )

    def process_example(
        self, input_data: tuple[str | Path | None] | None
    ) -> image_tuple:
        return self.process_example_dims(input_data)