from fastai.vision import * import gradio as gr from fastbook import * import os import glob def classify_digit_type(img): name = os.path.basename(os.path.normpath(img)) return name[0] learn = load_learner('model.pkl') categories = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(fn=predict, inputs=gr.Image(shape=(512, 512)), outputs=gr.Label(num_top_classes=3)).launch(share=True)