File size: 8,275 Bytes
5279276
 
87930ea
 
 
 
 
 
 
5279276
87930ea
 
 
 
 
 
67ab5d0
5279276
633dd54
0d5fe86
 
633dd54
987fe56
94540c3
 
3d2e2f5
94540c3
87930ea
94540c3
87930ea
 
4898006
87930ea
3268a02
87930ea
 
 
 
 
 
 
 
3268a02
b164fe5
c8a9127
b164fe5
 
 
3268a02
 
 
 
87930ea
 
 
 
 
 
5279276
3268a02
87930ea
 
 
b164fe5
87930ea
 
4898006
b164fe5
 
87930ea
 
e2607b6
87930ea
5279276
87930ea
 
 
 
3037cd1
 
 
 
987fe56
 
 
 
 
 
5279276
5d37f08
 
67ab5d0
7a52d3b
67ab5d0
5d37f08
fda1d4b
 
 
 
 
 
 
8aaf9c8
67ab5d0
5279276
e2607b6
a74d5f9
3268a02
5279276
67ab5d0
3268a02
5279276
987fe56
 
5279276
67da1a1
e2607b6
5279276
a74d5f9
 
5279276
 
a74d5f9
 
 
 
5279276
 
 
a74d5f9
5279276
5d37f08
7a52d3b
 
 
67ab5d0
bf9ca9b
7a52d3b
5279276
 
 
 
 
a74d5f9
 
 
 
5279276
 
 
 
d9f3c9f
016ec2e
5d37f08
5279276
5d37f08
87930ea
 
 
b164fe5
87930ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b164fe5
 
 
 
 
 
 
 
 
 
3037cd1
b164fe5
 
 
a74d5f9
3583d5c
b164fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3037cd1
0d5fe86
 
 
38699b4
87930ea
38699b4
 
 
 
 
 
 
94540c3
 
0d5fe86
 
 
 
 
c8a9127
 
0d5fe86
87930ea
b164fe5
87930ea
 
 
 
b164fe5
5279276
b164fe5
3583d5c
52385ae
b164fe5
87930ea
b164fe5
87930ea
5279276
87930ea
 
b164fe5
87930ea
 
94540c3
e2607b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import io
import os
import time
import traceback
from dataclasses import dataclass, field

import gradio as gr
import librosa
import numpy as np
import pvorca
import soundfile as sf
import spaces
import torch
import xxhash
from datasets import Audio
from transformers import AutoModel
from transformers.modeling_outputs import CausalLMOutputWithPast

orca = pvorca.create(
    access_key=os.environ.get("ORCA_KEY"),
    model_path="./static/orca_params_masculine.pv",
)
LOADER_STR = "♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪loading♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪loading♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪♫"
if gr.NO_RELOAD:
    diva_model = AutoModel.from_pretrained(
        "WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True, revision="79fec82089dd6cde6eca15ef6f48dd99993e1a90"
    )

    resampler = Audio(sampling_rate=16_000)


@spaces.GPU
@torch.no_grad
def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None):
    sr, y = audio_input
    x = xxhash.xxh32(bytes(y)).hexdigest()
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))
    a = resampler.decode_example(
        resampler.encode_example({"array": y, "sampling_rate": sr})
    )
    yield from diva_model.generate_stream(
        a["array"],
        (
            "Your name is DiVA, which stands for Distilled Voice Assistant. You were trained with early-fusion training to merge OpenAI's Whisper and Meta AI's Llama 3 8B to provide end-to-end voice processing. You should respond in a conversational style. The user is talking to you with their voice and you are responding with text. Use fewer than 20 words."
            if prev_outs == None
            else None
        ),
        do_sample=do_sample,
        max_new_tokens=256,
        init_outputs=prev_outs,
        return_outputs=True,
    )


@dataclass
class AppState:
    conversation: list = field(default_factory=list)
    stopped: bool = False
    model_outs: any = None


def process_audio(audio: tuple, state: AppState):
    return audio, state


@spaces.GPU(duration=40, progress=gr.Progress(track_tqdm=True))
def response(state: AppState, audio: tuple):
    if not audio:
        return AppState()

    file_name = f"/tmp/{xxhash.xxh32(bytes(audio[1])).hexdigest()}.wav"

    sf.write(file_name, audio[1], audio[0], format="wav")

    state.conversation.append(
        {"role": "user", "content": {"path": file_name, "mime_type": "audio/wav"}}
    )
    if state.model_outs is None:
        gr.Warning(
            "The first response might take a second to generate as DiVA is loaded from Disk to the ZeroGPU!"
        )
    state.conversation.append(
        {
            "role": "assistant",
            "content": LOADER_STR,
        }
    )
    yield state, state.conversation, None
    if spaces.config.Config.zero_gpu:
        if state.model_outs is not None:
            state.model_outs = tuple(
                tuple(torch.tensor(vec).cuda() for vec in tup)
                for tup in state.model_outs
            )
        causal_outs = (
            CausalLMOutputWithPast(past_key_values=state.model_outs)
            if state.model_outs
            else None
        )
    else:
        causal_outs = state.model_outs
    state.model_outs = None
    prev_outs = causal_outs
    stream = orca.stream_open()

    buff = []
    for resp, outs in diva_audio(
        (audio[0], audio[1]),
        prev_outs=(prev_outs if prev_outs is not None else None),
    ):
        prev_resp = state.conversation[-1]["content"]
        if prev_resp == LOADER_STR:
            prev_resp = ""
        state.conversation[-1]["content"] = resp
        pcm = stream.synthesize(resp[len(prev_resp) :])
        audio_chunk = None
        if pcm is not None:
            buff.extend(pcm)
        if len(buff) > (orca.sample_rate * 2):
            mp3_io = io.BytesIO()
            sf.write(
                mp3_io,
                np.asarray(buff[: orca.sample_rate]).astype(np.int16),
                orca.sample_rate,
                format="mp3",
            )
            audio_chunk = mp3_io.getvalue()
            mp3_io.close()
            buff = buff[orca.sample_rate :]
        yield state, state.conversation, audio_chunk

    del outs.logits
    del outs.hidden_states
    if spaces.config.Config.zero_gpu:
        outs = tuple(
            tuple(vec.cpu().numpy() for vec in tup) for tup in outs.past_key_values
        )
    audio_chunk = None
    pcm = stream.flush()
    if pcm is not None:
        mp3_io = io.BytesIO()
        sf.write(
            mp3_io,
            np.asarray(buff + pcm).astype(np.int16),
            orca.sample_rate,
            format="mp3",
        )
        audio_chunk = mp3_io.getvalue()
        mp3_io.close()
    stream.close()
    yield (
        AppState(conversation=state.conversation, model_outs=outs),
        state.conversation,
        audio_chunk,
    )


def start_recording_user(state: AppState):
    return None


theme = gr.themes.Soft(
    primary_hue=gr.themes.Color(
        c100="#82000019",
        c200="#82000033",
        c300="#8200004c",
        c400="#82000066",
        c50="#8200007f",
        c500="#8200007f",
        c600="#82000099",
        c700="#820000b2",
        c800="#820000cc",
        c900="#820000e5",
        c950="#820000f2",
    ),
    secondary_hue="rose",
    neutral_hue="stone",
)

js = """
async function main() {
  const script1 = document.createElement("script");
  script1.src = "https://cdn.jsdelivr.net/npm/[email protected]/dist/ort.js";
  document.head.appendChild(script1)
  const script2 = document.createElement("script");
  script2.onload = async () =>  {
    console.log("vad loaded") ;
    var record = document.querySelector('.record-button');
    record.textContent = "Just Start Talking!"
    record.style = "width: fit-content; padding-right: 0.5vw;"
    const myvad = await vad.MicVAD.new({
      onSpeechStart: () => {
        var record = document.querySelector('.record-button');
        var player = document.getElementById("streaming_out").querySelector(".standard-player")
        if (record != null && (player == null || player.paused)) {
          console.log(record);
          record.click();
        }
      },
      onSpeechEnd: (audio) => {
        var stop = document.querySelector('.stop-button');
        if (stop != null) {
          console.log(stop);
          stop.click();
        }
      }
    })
    myvad.start()
  }
  script2.src = "https://cdn.jsdelivr.net/npm/@ricky0123/[email protected]/dist/bundle.min.js";
  script1.onload = () =>  {
    console.log("onnx loaded") 
    document.head.appendChild(script2)
  };
}
"""

js_reset = """
() => {
  var record = document.querySelector('.record-button');
  record.textContent = "Just Start Talking!"
  record.style = "width: fit-content; padding-right: 0.5vw;"
}
"""

with gr.Blocks(theme=theme, js=js) as demo:
    with gr.Row():
        input_audio = gr.Audio(
            label="Input Audio",
            sources=["microphone"],
            type="numpy",
            streaming=False,
            waveform_options=gr.WaveformOptions(waveform_color="#B83A4B"),
        )
    with gr.Row():
        chatbot = gr.Chatbot(label="Conversation", type="messages")
    with gr.Row(max_height="50vh"):
        output_audio = gr.Audio(
            label="Output Audio",
            streaming=True,
            autoplay=True,
            visible=True,
            elem_id="streaming_out",
        )
    state = gr.State(value=AppState())
    stream = input_audio.start_recording(
        process_audio,
        [input_audio, state],
        [input_audio, state],
    )
    respond = input_audio.stop_recording(
        response, [state, input_audio], [state, chatbot, output_audio]
    )
    restart = respond.then(start_recording_user, [state], [input_audio]).then(
        lambda state: state, state, state, js=js_reset
    )

    cancel = gr.Button("Restart Conversation", variant="stop")
    cancel.click(
        lambda: (AppState(), gr.Audio(recording=False)),
        None,
        [state, input_audio],
        cancels=[respond, restart],
    )

if __name__ == "__main__":
    demo.launch()