Spaces:
Sleeping
Sleeping
File size: 8,275 Bytes
5279276 87930ea 5279276 87930ea 67ab5d0 5279276 633dd54 0d5fe86 633dd54 987fe56 94540c3 3d2e2f5 94540c3 87930ea 94540c3 87930ea 4898006 87930ea 3268a02 87930ea 3268a02 b164fe5 c8a9127 b164fe5 3268a02 87930ea 5279276 3268a02 87930ea b164fe5 87930ea 4898006 b164fe5 87930ea e2607b6 87930ea 5279276 87930ea 3037cd1 987fe56 5279276 5d37f08 67ab5d0 7a52d3b 67ab5d0 5d37f08 fda1d4b 8aaf9c8 67ab5d0 5279276 e2607b6 a74d5f9 3268a02 5279276 67ab5d0 3268a02 5279276 987fe56 5279276 67da1a1 e2607b6 5279276 a74d5f9 5279276 a74d5f9 5279276 a74d5f9 5279276 5d37f08 7a52d3b 67ab5d0 bf9ca9b 7a52d3b 5279276 a74d5f9 5279276 d9f3c9f 016ec2e 5d37f08 5279276 5d37f08 87930ea b164fe5 87930ea b164fe5 3037cd1 b164fe5 a74d5f9 3583d5c b164fe5 3037cd1 0d5fe86 38699b4 87930ea 38699b4 94540c3 0d5fe86 c8a9127 0d5fe86 87930ea b164fe5 87930ea b164fe5 5279276 b164fe5 3583d5c 52385ae b164fe5 87930ea b164fe5 87930ea 5279276 87930ea b164fe5 87930ea 94540c3 e2607b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import io
import os
import time
import traceback
from dataclasses import dataclass, field
import gradio as gr
import librosa
import numpy as np
import pvorca
import soundfile as sf
import spaces
import torch
import xxhash
from datasets import Audio
from transformers import AutoModel
from transformers.modeling_outputs import CausalLMOutputWithPast
orca = pvorca.create(
access_key=os.environ.get("ORCA_KEY"),
model_path="./static/orca_params_masculine.pv",
)
LOADER_STR = "♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪loading♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪loading♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪♫"
if gr.NO_RELOAD:
diva_model = AutoModel.from_pretrained(
"WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True, revision="79fec82089dd6cde6eca15ef6f48dd99993e1a90"
)
resampler = Audio(sampling_rate=16_000)
@spaces.GPU
@torch.no_grad
def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None):
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(
resampler.encode_example({"array": y, "sampling_rate": sr})
)
yield from diva_model.generate_stream(
a["array"],
(
"Your name is DiVA, which stands for Distilled Voice Assistant. You were trained with early-fusion training to merge OpenAI's Whisper and Meta AI's Llama 3 8B to provide end-to-end voice processing. You should respond in a conversational style. The user is talking to you with their voice and you are responding with text. Use fewer than 20 words."
if prev_outs == None
else None
),
do_sample=do_sample,
max_new_tokens=256,
init_outputs=prev_outs,
return_outputs=True,
)
@dataclass
class AppState:
conversation: list = field(default_factory=list)
stopped: bool = False
model_outs: any = None
def process_audio(audio: tuple, state: AppState):
return audio, state
@spaces.GPU(duration=40, progress=gr.Progress(track_tqdm=True))
def response(state: AppState, audio: tuple):
if not audio:
return AppState()
file_name = f"/tmp/{xxhash.xxh32(bytes(audio[1])).hexdigest()}.wav"
sf.write(file_name, audio[1], audio[0], format="wav")
state.conversation.append(
{"role": "user", "content": {"path": file_name, "mime_type": "audio/wav"}}
)
if state.model_outs is None:
gr.Warning(
"The first response might take a second to generate as DiVA is loaded from Disk to the ZeroGPU!"
)
state.conversation.append(
{
"role": "assistant",
"content": LOADER_STR,
}
)
yield state, state.conversation, None
if spaces.config.Config.zero_gpu:
if state.model_outs is not None:
state.model_outs = tuple(
tuple(torch.tensor(vec).cuda() for vec in tup)
for tup in state.model_outs
)
causal_outs = (
CausalLMOutputWithPast(past_key_values=state.model_outs)
if state.model_outs
else None
)
else:
causal_outs = state.model_outs
state.model_outs = None
prev_outs = causal_outs
stream = orca.stream_open()
buff = []
for resp, outs in diva_audio(
(audio[0], audio[1]),
prev_outs=(prev_outs if prev_outs is not None else None),
):
prev_resp = state.conversation[-1]["content"]
if prev_resp == LOADER_STR:
prev_resp = ""
state.conversation[-1]["content"] = resp
pcm = stream.synthesize(resp[len(prev_resp) :])
audio_chunk = None
if pcm is not None:
buff.extend(pcm)
if len(buff) > (orca.sample_rate * 2):
mp3_io = io.BytesIO()
sf.write(
mp3_io,
np.asarray(buff[: orca.sample_rate]).astype(np.int16),
orca.sample_rate,
format="mp3",
)
audio_chunk = mp3_io.getvalue()
mp3_io.close()
buff = buff[orca.sample_rate :]
yield state, state.conversation, audio_chunk
del outs.logits
del outs.hidden_states
if spaces.config.Config.zero_gpu:
outs = tuple(
tuple(vec.cpu().numpy() for vec in tup) for tup in outs.past_key_values
)
audio_chunk = None
pcm = stream.flush()
if pcm is not None:
mp3_io = io.BytesIO()
sf.write(
mp3_io,
np.asarray(buff + pcm).astype(np.int16),
orca.sample_rate,
format="mp3",
)
audio_chunk = mp3_io.getvalue()
mp3_io.close()
stream.close()
yield (
AppState(conversation=state.conversation, model_outs=outs),
state.conversation,
audio_chunk,
)
def start_recording_user(state: AppState):
return None
theme = gr.themes.Soft(
primary_hue=gr.themes.Color(
c100="#82000019",
c200="#82000033",
c300="#8200004c",
c400="#82000066",
c50="#8200007f",
c500="#8200007f",
c600="#82000099",
c700="#820000b2",
c800="#820000cc",
c900="#820000e5",
c950="#820000f2",
),
secondary_hue="rose",
neutral_hue="stone",
)
js = """
async function main() {
const script1 = document.createElement("script");
script1.src = "https://cdn.jsdelivr.net/npm/[email protected]/dist/ort.js";
document.head.appendChild(script1)
const script2 = document.createElement("script");
script2.onload = async () => {
console.log("vad loaded") ;
var record = document.querySelector('.record-button');
record.textContent = "Just Start Talking!"
record.style = "width: fit-content; padding-right: 0.5vw;"
const myvad = await vad.MicVAD.new({
onSpeechStart: () => {
var record = document.querySelector('.record-button');
var player = document.getElementById("streaming_out").querySelector(".standard-player")
if (record != null && (player == null || player.paused)) {
console.log(record);
record.click();
}
},
onSpeechEnd: (audio) => {
var stop = document.querySelector('.stop-button');
if (stop != null) {
console.log(stop);
stop.click();
}
}
})
myvad.start()
}
script2.src = "https://cdn.jsdelivr.net/npm/@ricky0123/[email protected]/dist/bundle.min.js";
script1.onload = () => {
console.log("onnx loaded")
document.head.appendChild(script2)
};
}
"""
js_reset = """
() => {
var record = document.querySelector('.record-button');
record.textContent = "Just Start Talking!"
record.style = "width: fit-content; padding-right: 0.5vw;"
}
"""
with gr.Blocks(theme=theme, js=js) as demo:
with gr.Row():
input_audio = gr.Audio(
label="Input Audio",
sources=["microphone"],
type="numpy",
streaming=False,
waveform_options=gr.WaveformOptions(waveform_color="#B83A4B"),
)
with gr.Row():
chatbot = gr.Chatbot(label="Conversation", type="messages")
with gr.Row(max_height="50vh"):
output_audio = gr.Audio(
label="Output Audio",
streaming=True,
autoplay=True,
visible=True,
elem_id="streaming_out",
)
state = gr.State(value=AppState())
stream = input_audio.start_recording(
process_audio,
[input_audio, state],
[input_audio, state],
)
respond = input_audio.stop_recording(
response, [state, input_audio], [state, chatbot, output_audio]
)
restart = respond.then(start_recording_user, [state], [input_audio]).then(
lambda state: state, state, state, js=js_reset
)
cancel = gr.Button("Restart Conversation", variant="stop")
cancel.click(
lambda: (AppState(), gr.Audio(recording=False)),
None,
[state, input_audio],
cancels=[respond, restart],
)
if __name__ == "__main__":
demo.launch()
|