import time import traceback from dataclasses import dataclass, field import gradio as gr import librosa import numpy as np import soundfile as sf import spaces import torch import xxhash from datasets import Audio from transformers import AutoModel from transformers.modeling_outputs import CausalLMOutputWithPast import io if gr.NO_RELOAD: diva_model = AutoModel.from_pretrained( "WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True ) resampler = Audio(sampling_rate=16_000) @spaces.GPU @torch.no_grad def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None): sr, y = audio_input x = xxhash.xxh32(bytes(y)).hexdigest() y = y.astype(np.float32) y /= np.max(np.abs(y)) a = resampler.decode_example( resampler.encode_example({"array": y, "sampling_rate": sr}) ) yield from diva_model.generate_stream( a["array"], ( "Your name is DiVA, which stands for Distilled Voice Assistant. You were trained with early-fusion training to merge OpenAI's Whisper and Meta AI's Llama 3 8B to provide end-to-end voice processing. You should give brief and helpful answers, in a conversational style. The user is talking to you with their voice and you are responding with text." if prev_outs == None else None ), do_sample=do_sample, max_new_tokens=256, init_outputs=prev_outs, return_outputs=True, ) @dataclass class AppState: stream: np.ndarray | None = None sampling_rate: int = 0 stopped: bool = False conversation: list = field(default_factory=list) model_outs: any = None def process_audio(audio: tuple, state: AppState): return audio, state @spaces.GPU(duration=40, progress=gr.Progress(track_tqdm=True)) def response(state: AppState, audio: tuple): if not audio: return AppState() state.stream = audio[1] state.sampling_rate = audio[0] file_name = f"/tmp/{xxhash.xxh32(bytes(state.stream)).hexdigest()}.wav" sf.write(file_name, state.stream, state.sampling_rate, format="wav") state.conversation.append( {"role": "user", "content": {"path": file_name, "mime_type": "audio/wav"}} ) if spaces.config.Config.zero_gpu: if state.model_outs is not None: state.model_outs = tuple( tuple(torch.tensor(vec).cuda() for vec in tup) for tup in state.model_outs ) causal_outs = CausalLMOutputWithPast(past_key_values=state.model_outs) prev_outs = causal_outs start = False for resp, outs in diva_audio( (state.sampling_rate, state.stream), prev_outs=(prev_outs if prev_outs is not None else None), ): if not start: state.conversation.append({"role": "assistant", "content": resp}) start = True else: state.conversation[-1]["content"] = resp # yield state, state.conversation del outs.logits del outs.hidden_states if spaces.config.Config.zero_gpu: outs = tuple( tuple(vec.cpu().numpy() for vec in tup) for tup in outs.past_key_values ) return ( AppState(conversation=state.conversation, model_outs=outs), state.conversation, ) def start_recording_user(state: AppState): return None theme = gr.themes.Soft( primary_hue=gr.themes.Color( c100="#82000019", c200="#82000033", c300="#8200004c", c400="#82000066", c50="#8200007f", c500="#8200007f", c600="#82000099", c700="#820000b2", c800="#820000cc", c900="#820000e5", c950="#820000f2", ), secondary_hue="rose", neutral_hue="stone", ) js = """ async function main() { const script1 = document.createElement("script"); script1.src = "https://cdn.jsdelivr.net/npm/onnxruntime-web@1.14.0/dist/ort.js"; document.head.appendChild(script1) const script2 = document.createElement("script"); script2.onload = async () => { console.log("vad loaded") ; var record = document.querySelector('.record-button'); record.textContent = "Just Start Talking!" record.style = "width: 11vw" const myvad = await vad.MicVAD.new({ onSpeechStart: () => { var record = document.querySelector('.record-button'); if (record != null) { console.log(record); record.click(); } }, onSpeechEnd: (audio) => { var stop = document.querySelector('.stop-button'); if (stop != null) { console.log(stop); stop.click(); } } }) myvad.start() } script2.src = "https://cdn.jsdelivr.net/npm/@ricky0123/vad-web@0.0.7/dist/bundle.min.js"; script1.onload = () => { console.log("onnx loaded") document.head.appendChild(script2) }; } """ js_reset = """ () => { var record = document.querySelector('.record-button'); record.textContent = "Just Start Talking!" record.style = "width: 11vw" } """ with gr.Blocks(theme=theme, js=js) as demo: with gr.Row(): input_audio = gr.Audio( label="Input Audio", sources=["microphone"], type="numpy", streaming=False, ) with gr.Row(): chatbot = gr.Chatbot(label="Conversation", type="messages") state = gr.State(value=AppState()) stream = input_audio.start_recording( process_audio, [input_audio, state], [input_audio, state], ) respond = input_audio.stop_recording( response, [state, input_audio], [state, chatbot] ) restart = respond.success(start_recording_user, [state], [input_audio]).then( lambda state: state, state, state, js=js_reset ) cancel = gr.Button("Restart Conversation", variant="stop") cancel.click( lambda: (AppState(stopped=True), gr.Audio(recording=False)), None, [state, input_audio], cancels=[respond, restart], ) if __name__ == "__main__": demo.launch()