File size: 1,624 Bytes
7c2ff9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import streamlit as st
from transformers import pipeline
import time
def sentiment(summary):
pipe = pipeline("text-classification", model="WillWEI0103/CustomModel_finance_sentiment_analytics")
label = pipe(summary)[0]['label']
score = pipe(summary)[0]['score']
return label,score
def main():
dicts={"bullish":'Positive📈',"bearish":'Negative📉','neutral':"Neutral😐"}
st.header("Summarize Your Finance News and Analyze Sentiment📰")
text=st.text_input('Input your Finance news(Max lenth<=3000): ',None,max_chars=3000)
#if text is not None:
if st.button('Conduct'):
st.text_area('Your Finance News: ',text,height=100)
#Stage 1: Text Summarization
with st.status("Processing Finance News Summarization...") as status:
text_summarize=pipeline("summarization", model="nickmuchi/fb-bart-large-finetuned-trade-the-event-finance-summarizer")
summary=text_summarize(text)[0]['summary_text']
status.update(label="Summarization Completed", state="complete", expanded=False)
st.text_area('Your Finance News Summary',summary,height=30)
#Stage 2: Sentiment Analytics
with st.status("Processing Sentiment Analytics..") as status:
label,score = sentiment(summary)
label=dicts[label]
status.update(label="Sentiment Analytics Completed", state="complete", expanded=False)
st.text('The Sentiment of the Finance News is: ')
st.text(label)
st.text('The Sentiment Score: ')
st.text(round(score,3))
if __name__ == "__main__":
main() |