|
import streamlit as st |
|
from transformers import pipeline |
|
import time |
|
|
|
def sentiment(summary): |
|
pipe = pipeline("text-classification", model="WillWEI0103/CustomModel_finance_sentiment_analytics") |
|
label = pipe(summary)[0]['label'] |
|
return label |
|
|
|
|
|
def main(): |
|
dicts={"bullish":'Positive📈',"bearish":'Negative📉','neutral':"Neutral😐"} |
|
st.set_page_config(page_title="Your Finance news", page_icon="📰") |
|
st.header("Summarize Your Finance News and Analyze Sentiment") |
|
text=st.text_input('Input your Finance news(Max lenth<=3000): ',max_chars=3000) |
|
if isinstance(text,str): |
|
|
|
st.write('Your Finance news: ',str(text)) |
|
time.sleep(2) |
|
|
|
st.text('Processing Finance News Summarization...') |
|
text_summarize=pipeline("summarization", model="nickmuchi/fb-bart-large-finetuned-trade-the-event-finance-summarizer") |
|
summary=text_summarize(text)[0]['summary_text'] |
|
st.write(summary) |
|
|
|
|
|
st.text('Processing Sentiment Analytics...') |
|
label = sentiment(summary) |
|
label=dicts[label] |
|
st.text('The sentiment of finance news is: ') |
|
st.write(label) |
|
|
|
if __name__ == "__main__": |
|
main() |