Spaces:
Runtime error
Runtime error
File size: 22,635 Bytes
df4fb1d d483d19 df4fb1d 514baab df4fb1d d483d19 df4fb1d d483d19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
#Imports
from __future__ import print_function, division
import tensorflow as tf
from glob import glob
import scipy
import soundfile as sf
import matplotlib.pyplot as plt
from IPython.display import clear_output
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Concatenate, Conv2D, Conv2DTranspose, GlobalAveragePooling2D, UpSampling2D, LeakyReLU, ReLU, Add, Multiply, Lambda, Dot, BatchNormalization, Activation, ZeroPadding2D, Cropping2D, Cropping1D
from tensorflow.keras.models import Sequential, Model, load_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.initializers import TruncatedNormal, he_normal
import tensorflow.keras.backend as K
import datetime
import numpy as np
import random
import matplotlib.pyplot as plt
import collections
from PIL import Image
from skimage.transform import resize
import imageio
import librosa
import librosa.display
from librosa.feature import melspectrogram
import os
import time
import IPython
#Hyperparameters
hop=192 #hop size (window size = 6*hop)
sr=16000 #sampling rate
min_level_db=-100 #reference values to normalize data
ref_level_db=20
shape=24 #length of time axis of split specrograms to feed to generator
vec_len=128 #length of vector generated by siamese vector
bs = 16 #batch size
delta = 2. #constant for siamese loss
#There seems to be a problem with Tensorflow STFT, so we'll be using pytorch to handle offline mel-spectrogram generation and waveform reconstruction
#For waveform reconstruction, a gradient-based method is used:
''' Decorsière, Rémi, Peter L. Søndergaard, Ewen N. MacDonald, and Torsten Dau.
"Inversion of auditory spectrograms, traditional spectrograms, and other envelope representations."
IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, no. 1 (2014): 46-56.'''
#ORIGINAL CODE FROM https://github.com/yoyololicon/spectrogram-inversion
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from functools import partial
import math
import heapq
from torchaudio.transforms import MelScale, Spectrogram
specobj = Spectrogram(n_fft=6*hop, win_length=6*hop, hop_length=hop, pad=0, power=2, normalized=True)
specfunc = specobj.forward
melobj = MelScale(n_mels=hop, sample_rate=sr, f_min=0.,n_stft=577)
melfunc = melobj.forward
def melspecfunc(waveform):
specgram = specfunc(waveform)
mel_specgram = melfunc(specgram)
return mel_specgram
def spectral_convergence(input, target):
return 20 * ((input - target).norm().log10() - target.norm().log10())
def GRAD(spec, transform_fn, samples=None, init_x0=None, maxiter=1000, tol=1e-6, verbose=1, evaiter=10, lr=0.003):
spec = torch.Tensor(spec)
samples = (spec.shape[-1]*hop)-hop
if init_x0 is None:
init_x0 = spec.new_empty((1,samples)).normal_(std=1e-6)
x = nn.Parameter(init_x0)
T = spec
criterion = nn.L1Loss()
optimizer = torch.optim.Adam([x], lr=lr)
bar_dict = {}
metric_func = spectral_convergence
bar_dict['spectral_convergence'] = 0
metric = 'spectral_convergence'
init_loss = None
with tqdm(total=maxiter, disable=not verbose) as pbar:
for i in range(maxiter):
optimizer.zero_grad()
V = transform_fn(x)
loss = criterion(V, T)
loss.backward()
optimizer.step()
lr = lr*0.9999
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if i % evaiter == evaiter - 1:
with torch.no_grad():
V = transform_fn(x)
bar_dict[metric] = metric_func(V, spec).item()
l2_loss = criterion(V, spec).item()
pbar.set_postfix(**bar_dict, loss=l2_loss)
pbar.update(evaiter)
return x.detach().view(-1).cpu()
def normalize(S):
return np.clip((((S - min_level_db) / -min_level_db)*2.)-1., -1, 1)
def denormalize(S):
return (((np.clip(S, -1, 1)+1.)/2.) * -min_level_db) + min_level_db
def prep(wv,hop=192):
S = np.array(torch.squeeze(melspecfunc(torch.Tensor(wv).view(1,-1))).detach().cpu())
S = librosa.power_to_db(S)-ref_level_db
return normalize(S)
def deprep(S):
S = denormalize(S)+ref_level_db
S = librosa.db_to_power(S)
wv = GRAD(np.expand_dims(S,0), melspecfunc, maxiter=2000, evaiter=10, tol=1e-8)
return np.array(np.squeeze(wv))
#Helper functions
#Generate spectrograms from waveform array
def tospec(data):
specs=np.empty(data.shape[0], dtype=object)
for i in range(data.shape[0]):
x = data[i]
S=prep(x)
S = np.array(S, dtype=np.float32)
specs[i]=np.expand_dims(S, -1)
print(specs.shape)
return specs
#Generate multiple spectrograms with a determined length from single wav file
def tospeclong(path, length=4*16000):
x, sr = librosa.load(path,sr=16000)
x,_ = librosa.effects.trim(x)
loudls = librosa.effects.split(x, top_db=50)
xls = np.array([])
for interv in loudls:
xls = np.concatenate((xls,x[interv[0]:interv[1]]))
x = xls
num = x.shape[0]//length
specs=np.empty(num, dtype=object)
for i in range(num-1):
a = x[i*length:(i+1)*length]
S = prep(a)
S = np.array(S, dtype=np.float32)
try:
sh = S.shape
specs[i]=S
except AttributeError:
print('spectrogram failed')
print(specs.shape)
return specs
#Waveform array from path of folder containing wav files
def audio_array(path):
ls = glob(f'{path}/*.wav')
adata = []
for i in range(len(ls)):
try:
x, sr = tf.audio.decode_wav(tf.io.read_file(ls[i]), 1)
except:
print(ls[i],"is broken")
continue
x = np.array(x, dtype=np.float32)
adata.append(x)
return np.array(adata)
#Concatenate spectrograms in array along the time axis
def testass(a):
but=False
con = np.array([])
nim = a.shape[0]
for i in range(nim):
im = a[i]
im = np.squeeze(im)
if not but:
con=im
but=True
else:
con = np.concatenate((con,im), axis=1)
return np.squeeze(con)
#Split spectrograms in chunks with equal size
def splitcut(data):
ls = []
mini = 0
minifinal = 10*shape #max spectrogram length
for i in range(data.shape[0]-1):
if data[i].shape[1]<=data[i+1].shape[1]:
mini = data[i].shape[1]
else:
mini = data[i+1].shape[1]
if mini>=3*shape and mini<minifinal:
minifinal = mini
for i in range(data.shape[0]):
x = data[i]
if x.shape[1]>=3*shape:
for n in range(x.shape[1]//minifinal):
ls.append(x[:,n*minifinal:n*minifinal+minifinal,:])
ls.append(x[:,-minifinal:,:])
return np.array(ls)
#Adding Spectral Normalization to convolutional layers
from tensorflow.python.keras.utils import conv_utils
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops import gen_math_ops
from tensorflow.python.ops import standard_ops
from tensorflow.python.eager import context
from tensorflow.python.framework import tensor_shape
def l2normalize(v, eps=1e-12):
return v / (tf.norm(v) + eps)
class ConvSN2D(tf.keras.layers.Conv2D):
def __init__(self, filters, kernel_size, power_iterations=1, **kwargs):
super(ConvSN2D, self).__init__(filters, kernel_size, **kwargs)
self.power_iterations = power_iterations
def build(self, input_shape):
super(ConvSN2D, self).build(input_shape)
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
self.u = self.add_weight(self.name + '_u',
shape=tuple([1, self.kernel.shape.as_list()[-1]]),
initializer=tf.initializers.RandomNormal(0, 1),
trainable=False
)
def compute_spectral_norm(self, W, new_u, W_shape):
for _ in range(self.power_iterations):
new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
new_u = l2normalize(tf.matmul(new_v, W))
sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
W_bar = W/sigma
with tf.control_dependencies([self.u.assign(new_u)]):
W_bar = tf.reshape(W_bar, W_shape)
return W_bar
def convolution_op(self, inputs, kernel):
if self.padding == "causal":
tf_padding = "VALID" # Causal padding handled in `call`.
elif isinstance(self.padding, str):
tf_padding = self.padding.upper()
else:
tf_padding = self.padding
return tf.nn.convolution(
inputs,
kernel,
strides=list(self.strides),
padding=tf_padding,
dilations=list(self.dilation_rate),
)
def call(self, inputs):
W_shape = self.kernel.shape.as_list()
W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
outputs = self.convolution_op(inputs, new_kernel)
if self.use_bias:
if self.data_format == 'channels_first':
outputs = tf.nn.bias_add(outputs, self.bias, data_format='NCHW')
else:
outputs = tf.nn.bias_add(outputs, self.bias, data_format='NHWC')
if self.activation is not None:
return self.activation(outputs)
return outputs
class ConvSN2DTranspose(tf.keras.layers.Conv2DTranspose):
def __init__(self, filters, kernel_size, power_iterations=1, **kwargs):
super(ConvSN2DTranspose, self).__init__(filters, kernel_size, **kwargs)
self.power_iterations = power_iterations
def build(self, input_shape):
super(ConvSN2DTranspose, self).build(input_shape)
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
self.u = self.add_weight(self.name + '_u',
shape=tuple([1, self.kernel.shape.as_list()[-1]]),
initializer=tf.initializers.RandomNormal(0, 1),
trainable=False
)
def compute_spectral_norm(self, W, new_u, W_shape):
for _ in range(self.power_iterations):
new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
new_u = l2normalize(tf.matmul(new_v, W))
sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
W_bar = W/sigma
with tf.control_dependencies([self.u.assign(new_u)]):
W_bar = tf.reshape(W_bar, W_shape)
return W_bar
def call(self, inputs):
W_shape = self.kernel.shape.as_list()
W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
inputs_shape = array_ops.shape(inputs)
batch_size = inputs_shape[0]
if self.data_format == 'channels_first':
h_axis, w_axis = 2, 3
else:
h_axis, w_axis = 1, 2
height, width = inputs_shape[h_axis], inputs_shape[w_axis]
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.strides
if self.output_padding is None:
out_pad_h = out_pad_w = None
else:
out_pad_h, out_pad_w = self.output_padding
out_height = conv_utils.deconv_output_length(height,
kernel_h,
padding=self.padding,
output_padding=out_pad_h,
stride=stride_h,
dilation=self.dilation_rate[0])
out_width = conv_utils.deconv_output_length(width,
kernel_w,
padding=self.padding,
output_padding=out_pad_w,
stride=stride_w,
dilation=self.dilation_rate[1])
if self.data_format == 'channels_first':
output_shape = (batch_size, self.filters, out_height, out_width)
else:
output_shape = (batch_size, out_height, out_width, self.filters)
output_shape_tensor = array_ops.stack(output_shape)
outputs = K.conv2d_transpose(
inputs,
new_kernel,
output_shape_tensor,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate)
if not context.executing_eagerly():
out_shape = self.compute_output_shape(inputs.shape)
outputs.set_shape(out_shape)
if self.use_bias:
outputs = tf.nn.bias_add(
outputs,
self.bias,
data_format=conv_utils.convert_data_format(self.data_format, ndim=4))
if self.activation is not None:
return self.activation(outputs)
return outputs
class DenseSN(Dense):
def build(self, input_shape):
super(DenseSN, self).build(input_shape)
self.u = self.add_weight(self.name + '_u',
shape=tuple([1, self.kernel.shape.as_list()[-1]]),
initializer=tf.initializers.RandomNormal(0, 1),
trainable=False)
def compute_spectral_norm(self, W, new_u, W_shape):
new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
new_u = l2normalize(tf.matmul(new_v, W))
sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
W_bar = W/sigma
with tf.control_dependencies([self.u.assign(new_u)]):
W_bar = tf.reshape(W_bar, W_shape)
return W_bar
def call(self, inputs):
W_shape = self.kernel.shape.as_list()
W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
rank = len(inputs.shape)
if rank > 2:
outputs = standard_ops.tensordot(inputs, new_kernel, [[rank - 1], [0]])
if not context.executing_eagerly():
shape = inputs.shape.as_list()
output_shape = shape[:-1] + [self.units]
outputs.set_shape(output_shape)
else:
inputs = math_ops.cast(inputs, self._compute_dtype)
if K.is_sparse(inputs):
outputs = sparse_ops.sparse_tensor_dense_matmul(inputs, new_kernel)
else:
outputs = gen_math_ops.mat_mul(inputs, new_kernel)
if self.use_bias:
outputs = tf.nn.bias_add(outputs, self.bias)
if self.activation is not None:
return self.activation(outputs)
return outputs
#Networks Architecture
init = tf.keras.initializers.he_uniform()
def conv2d(layer_input, filters, kernel_size=4, strides=2, padding='same', leaky=True, bnorm=True, sn=True):
if leaky:
Activ = LeakyReLU(alpha=0.2)
else:
Activ = ReLU()
if sn:
d = ConvSN2D(filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=init, use_bias=False)(layer_input)
else:
d = Conv2D(filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=init, use_bias=False)(layer_input)
if bnorm:
d = BatchNormalization()(d)
d = Activ(d)
return d
def deconv2d(layer_input, layer_res, filters, kernel_size=4, conc=True, scalev=False, bnorm=True, up=True, padding='same', strides=2):
if up:
u = UpSampling2D((1,2))(layer_input)
u = ConvSN2D(filters, kernel_size, strides=(1,1), kernel_initializer=init, use_bias=False, padding=padding)(u)
else:
u = ConvSN2DTranspose(filters, kernel_size, strides=strides, kernel_initializer=init, use_bias=False, padding=padding)(layer_input)
if bnorm:
u = BatchNormalization()(u)
u = LeakyReLU(alpha=0.2)(u)
if conc:
u = Concatenate()([u,layer_res])
return u
#Extract function: splitting spectrograms
def extract_image(im):
im1 = Cropping2D(((0,0), (0, 2*(im.shape[2]//3))))(im)
im2 = Cropping2D(((0,0), (im.shape[2]//3,im.shape[2]//3)))(im)
im3 = Cropping2D(((0,0), (2*(im.shape[2]//3), 0)))(im)
return im1,im2,im3
#Assemble function: concatenating spectrograms
def assemble_image(lsim):
im1,im2,im3 = lsim
imh = Concatenate(2)([im1,im2,im3])
return imh
#U-NET style architecture
def build_generator(input_shape):
h,w,c = input_shape
inp = Input(shape=input_shape)
#downscaling
g0 = tf.keras.layers.ZeroPadding2D((0,1))(inp)
g1 = conv2d(g0, 256, kernel_size=(h,3), strides=1, padding='valid')
g2 = conv2d(g1, 256, kernel_size=(1,9), strides=(1,2))
g3 = conv2d(g2, 256, kernel_size=(1,7), strides=(1,2))
#upscaling
g4 = deconv2d(g3,g2, 256, kernel_size=(1,7), strides=(1,2))
g5 = deconv2d(g4,g1, 256, kernel_size=(1,9), strides=(1,2), bnorm=False)
g6 = ConvSN2DTranspose(1, kernel_size=(h,1), strides=(1,1), kernel_initializer=init, padding='valid', activation='tanh')(g5)
return Model(inp,g6, name='G')
#Siamese Network
def build_siamese(input_shape):
h,w,c = input_shape
inp = Input(shape=input_shape)
g1 = conv2d(inp, 256, kernel_size=(h,3), strides=1, padding='valid', sn=False)
g2 = conv2d(g1, 256, kernel_size=(1,9), strides=(1,2), sn=False)
g3 = conv2d(g2, 256, kernel_size=(1,7), strides=(1,2), sn=False)
g4 = Flatten()(g3)
g5 = Dense(vec_len)(g4)
return Model(inp, g5, name='S')
#Discriminator (Critic) Network
def build_critic(input_shape):
h,w,c = input_shape
inp = Input(shape=input_shape)
g1 = conv2d(inp, 512, kernel_size=(h,3), strides=1, padding='valid', bnorm=False)
g2 = conv2d(g1, 512, kernel_size=(1,9), strides=(1,2), bnorm=False)
g3 = conv2d(g2, 512, kernel_size=(1,7), strides=(1,2), bnorm=False)
g4 = Flatten()(g3)
g4 = DenseSN(1, kernel_initializer=init)(g4)
return Model(inp, g4, name='C')
#Load past models from path to resume training or test
save_model_path = '/content/drive/MyDrive/weights' #@param {type:"string"}
def load(path):
gen = build_generator((hop,shape,1))
siam = build_siamese((hop,shape,1))
critic = build_critic((hop,3*shape,1))
gen.load_weights(path+'/gen.h5')
critic.load_weights(path+'/critic.h5')
siam.load_weights(path+'/siam.h5')
return gen,critic,siam
#Build models
def build():
gen = build_generator((hop,shape,1))
siam = build_siamese((hop,shape,1))
critic = build_critic((hop,3*shape,1)) #the discriminator accepts as input spectrograms of triple the width of those generated by the generator
return gen,critic,siam
#Show results mid-training
def save_test_image_full(path):
a = testgena()
print(a.shape)
ab = gen(a, training=False)
ab = testass(ab)
a = testass(a)
abwv = deprep(ab)
awv = deprep(a)
sf.write(path+'/new_file.wav', abwv, sr)
IPython.display.display(IPython.display.Audio(np.squeeze(abwv), rate=sr))
IPython.display.display(IPython.display.Audio(np.squeeze(awv), rate=sr))
fig, axs = plt.subplots(ncols=2)
axs[0].imshow(np.flip(a, -2), cmap=None)
axs[0].axis('off')
axs[0].set_title('Source')
axs[1].imshow(np.flip(ab, -2), cmap=None)
axs[1].axis('off')
axs[1].set_title('Generated')
plt.show()
#Save in training loop
def save_end(epoch,gloss,closs,mloss,n_save=3,save_path=save_model_path): #use custom save_path (i.e. Drive '../content/drive/My Drive/')
if epoch % n_save == 0:
print('Saving...')
path = f'{save_path}/MELGANVC-{str(gloss)[:9]}-{str(closs)[:9]}-{str(mloss)[:9]}'
os.mkdir(path)
gen.save_weights(path+'/gen.h5')
critic.save_weights(path+'/critic.h5')
siam.save_weights(path+'/siam.h5')
save_test_image_full(path)
#Get models and optimizers
def get_networks(shape, load_model=False, path=None):
if not load_model:
gen,critic,siam = build()
else:
gen,critic,siam = load(path)
print('Built networks')
opt_gen = Adam(0.0001, 0.5)
opt_disc = Adam(0.0001, 0.5)
return gen,critic,siam, [opt_gen,opt_disc]
#Set learning rate
def update_lr(lr):
opt_gen.learning_rate = lr
opt_disc.learning_rate = lr
#Build models and initialize optimizers
load_model_path='MELGANVC-0.4886211-0.5750153-0-20230612T163214Z-001\MELGANVC-0.4886211-0.5750153-0' #@param {type:"string"}
#If load_model=True, specify the path where the models are saved
gen,critic,siam, [opt_gen,opt_disc] = get_networks(shape, load_model=True,path="MELGANVC-0.4886211-0.5750153-0")
#After Training, use these functions to convert data with the generator and save the results
#Assembling generated Spectrogram chunks into final Spectrogram
def specass(a,spec):
but=False
con = np.array([])
nim = a.shape[0]
for i in range(nim-1):
im = a[i]
im = np.squeeze(im)
if not but:
con=im
but=True
else:
con = np.concatenate((con,im), axis=1)
diff = spec.shape[1]-(nim*shape)
a = np.squeeze(a)
con = np.concatenate((con,a[-1,:,-diff:]), axis=1)
return np.squeeze(con)
#Splitting input spectrogram into different chunks to feed to the generator
def chopspec(spec):
dsa=[]
for i in range(spec.shape[1]//shape):
im = spec[:,i*shape:i*shape+shape]
im = np.reshape(im, (im.shape[0],im.shape[1],1))
dsa.append(im)
imlast = spec[:,-shape:]
imlast = np.reshape(imlast, (imlast.shape[0],imlast.shape[1],1))
dsa.append(imlast)
return np.array(dsa, dtype=np.float32)
#Converting from source Spectrogram to target Spectrogram
def towave(spec, name, path='../content/', show=False):
specarr = chopspec(spec)
print(specarr.shape)
a = specarr
print('Generating...')
ab = gen(a, training=False)
print('Assembling and Converting...')
a = specass(a,spec)
ab = specass(ab,spec)
awv = deprep(a)
abwv = deprep(ab)
print('Saving...')
pathfin = f'{path}/{name}'
try:
os.mkdir(pathfin)
except:
pass
sf.write(pathfin+'/AB.wav', abwv, sr)
sf.write(pathfin+'/A.wav', awv, sr)
print('Saved WAV!')
IPython.display.display(IPython.display.Audio(np.squeeze(abwv), rate=sr))
IPython.display.display(IPython.display.Audio(np.squeeze(awv), rate=sr))
if show:
fig, axs = plt.subplots(ncols=2)
axs[0].imshow(np.flip(a, -2), cmap=None)
axs[0].axis('off')
axs[0].set_title('Source')
axs[1].imshow(np.flip(ab, -2), cmap=None)
axs[1].axis('off')
axs[1].set_title('Generated')
plt.show()
return abwv |