File size: 22,635 Bytes
df4fb1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d483d19
df4fb1d
 
514baab
df4fb1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d483d19
 
 
 
df4fb1d
 
 
 
 
 
 
 
 
 
 
 
 
 
d483d19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
#Imports

from __future__ import print_function, division
import tensorflow as tf
from glob import glob
import scipy
import soundfile as sf
import matplotlib.pyplot as plt
from IPython.display import clear_output
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Concatenate, Conv2D, Conv2DTranspose, GlobalAveragePooling2D, UpSampling2D, LeakyReLU, ReLU, Add, Multiply, Lambda, Dot, BatchNormalization, Activation, ZeroPadding2D, Cropping2D, Cropping1D
from tensorflow.keras.models import Sequential, Model, load_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.initializers import TruncatedNormal, he_normal
import tensorflow.keras.backend as K
import datetime
import numpy as np
import random
import matplotlib.pyplot as plt
import collections
from PIL import Image
from skimage.transform import resize
import imageio
import librosa
import librosa.display
from librosa.feature import melspectrogram
import os
import time
import IPython

#Hyperparameters

hop=192               #hop size (window size = 6*hop)
sr=16000              #sampling rate
min_level_db=-100     #reference values to normalize data
ref_level_db=20

shape=24              #length of time axis of split specrograms to feed to generator            
vec_len=128           #length of vector generated by siamese vector
bs = 16               #batch size
delta = 2.            #constant for siamese loss

#There seems to be a problem with Tensorflow STFT, so we'll be using pytorch to handle offline mel-spectrogram generation and waveform reconstruction
#For waveform reconstruction, a gradient-based method is used:

''' Decorsière, Rémi, Peter L. Søndergaard, Ewen N. MacDonald, and Torsten Dau. 
"Inversion of auditory spectrograms, traditional spectrograms, and other envelope representations." 
IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, no. 1 (2014): 46-56.'''

#ORIGINAL CODE FROM https://github.com/yoyololicon/spectrogram-inversion

import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from functools import partial
import math
import heapq
from torchaudio.transforms import MelScale, Spectrogram


specobj = Spectrogram(n_fft=6*hop, win_length=6*hop, hop_length=hop, pad=0, power=2, normalized=True)
specfunc = specobj.forward
melobj = MelScale(n_mels=hop, sample_rate=sr, f_min=0.,n_stft=577)
melfunc = melobj.forward

def melspecfunc(waveform):
  specgram = specfunc(waveform)
  mel_specgram = melfunc(specgram)
  return mel_specgram

def spectral_convergence(input, target):
    return 20 * ((input - target).norm().log10() - target.norm().log10())

def GRAD(spec, transform_fn, samples=None, init_x0=None, maxiter=1000, tol=1e-6, verbose=1, evaiter=10, lr=0.003):

    spec = torch.Tensor(spec)
    samples = (spec.shape[-1]*hop)-hop

    if init_x0 is None:
        init_x0 = spec.new_empty((1,samples)).normal_(std=1e-6)
    x = nn.Parameter(init_x0)
    T = spec

    criterion = nn.L1Loss()
    optimizer = torch.optim.Adam([x], lr=lr)

    bar_dict = {}
    metric_func = spectral_convergence
    bar_dict['spectral_convergence'] = 0
    metric = 'spectral_convergence'

    init_loss = None
    with tqdm(total=maxiter, disable=not verbose) as pbar:
        for i in range(maxiter):
            optimizer.zero_grad()
            V = transform_fn(x)
            loss = criterion(V, T)
            loss.backward()
            optimizer.step()
            lr = lr*0.9999
            for param_group in optimizer.param_groups:
              param_group['lr'] = lr

            if i % evaiter == evaiter - 1:
                with torch.no_grad():
                    V = transform_fn(x)
                    bar_dict[metric] = metric_func(V, spec).item()
                    l2_loss = criterion(V, spec).item()
                    pbar.set_postfix(**bar_dict, loss=l2_loss)
                    pbar.update(evaiter)

    return x.detach().view(-1).cpu()

def normalize(S):
  return np.clip((((S - min_level_db) / -min_level_db)*2.)-1., -1, 1)

def denormalize(S):
  return (((np.clip(S, -1, 1)+1.)/2.) * -min_level_db) + min_level_db

def prep(wv,hop=192):
  S = np.array(torch.squeeze(melspecfunc(torch.Tensor(wv).view(1,-1))).detach().cpu())
  S = librosa.power_to_db(S)-ref_level_db
  return normalize(S)

def deprep(S):
  S = denormalize(S)+ref_level_db
  S = librosa.db_to_power(S)
  wv = GRAD(np.expand_dims(S,0), melspecfunc, maxiter=2000, evaiter=10, tol=1e-8)
  return np.array(np.squeeze(wv))

#Helper functions

#Generate spectrograms from waveform array
def tospec(data):
  specs=np.empty(data.shape[0], dtype=object)
  for i in range(data.shape[0]):
    x = data[i]
    S=prep(x)
    S = np.array(S, dtype=np.float32)
    specs[i]=np.expand_dims(S, -1)
  print(specs.shape)
  return specs

#Generate multiple spectrograms with a determined length from single wav file
def tospeclong(path, length=4*16000):
  x, sr = librosa.load(path,sr=16000)
  x,_ = librosa.effects.trim(x)
  loudls = librosa.effects.split(x, top_db=50)
  xls = np.array([])
  for interv in loudls:
    xls = np.concatenate((xls,x[interv[0]:interv[1]]))
  x = xls
  num = x.shape[0]//length
  specs=np.empty(num, dtype=object)
  for i in range(num-1):
    a = x[i*length:(i+1)*length]
    S = prep(a)
    S = np.array(S, dtype=np.float32)
    try:
      sh = S.shape
      specs[i]=S
    except AttributeError:
      print('spectrogram failed')
  print(specs.shape)
  return specs

#Waveform array from path of folder containing wav files
def audio_array(path):
  ls = glob(f'{path}/*.wav')
  adata = []
  for i in range(len(ls)):
    try:
        x, sr = tf.audio.decode_wav(tf.io.read_file(ls[i]), 1)
    except:
        print(ls[i],"is broken")
        continue
    x = np.array(x, dtype=np.float32)
    adata.append(x)
  return np.array(adata)

#Concatenate spectrograms in array along the time axis
def testass(a):
  but=False
  con = np.array([])
  nim = a.shape[0]
  for i in range(nim):
    im = a[i]
    im = np.squeeze(im)
    if not but:
      con=im
      but=True
    else:
      con = np.concatenate((con,im), axis=1)
  return np.squeeze(con)

#Split spectrograms in chunks with equal size
def splitcut(data):
  ls = []
  mini = 0
  minifinal = 10*shape                                                              #max spectrogram length
  for i in range(data.shape[0]-1):
    if data[i].shape[1]<=data[i+1].shape[1]:
      mini = data[i].shape[1]
    else:
      mini = data[i+1].shape[1]
    if mini>=3*shape and mini<minifinal:
      minifinal = mini
  for i in range(data.shape[0]):
    x = data[i]
    if x.shape[1]>=3*shape:
      for n in range(x.shape[1]//minifinal):
        ls.append(x[:,n*minifinal:n*minifinal+minifinal,:])
      ls.append(x[:,-minifinal:,:])
  return np.array(ls)

#Adding Spectral Normalization to convolutional layers

from tensorflow.python.keras.utils import conv_utils
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops import gen_math_ops
from tensorflow.python.ops import standard_ops
from tensorflow.python.eager import context
from tensorflow.python.framework import tensor_shape

def l2normalize(v, eps=1e-12):
    return v / (tf.norm(v) + eps)


class ConvSN2D(tf.keras.layers.Conv2D):

    def __init__(self, filters, kernel_size, power_iterations=1, **kwargs):
        super(ConvSN2D, self).__init__(filters, kernel_size, **kwargs)
        self.power_iterations = power_iterations


    def build(self, input_shape):
        super(ConvSN2D, self).build(input_shape)

        if self.data_format == 'channels_first':
            channel_axis = 1
        else:
            channel_axis = -1

        self.u = self.add_weight(self.name + '_u',
            shape=tuple([1, self.kernel.shape.as_list()[-1]]), 
            initializer=tf.initializers.RandomNormal(0, 1),
            trainable=False
        )

    def compute_spectral_norm(self, W, new_u, W_shape):
        for _ in range(self.power_iterations):

            new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
            new_u = l2normalize(tf.matmul(new_v, W))
            
        sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
        W_bar = W/sigma

        with tf.control_dependencies([self.u.assign(new_u)]):
          W_bar = tf.reshape(W_bar, W_shape)

        return W_bar

    def convolution_op(self, inputs, kernel):
        if self.padding == "causal":
            tf_padding = "VALID"  # Causal padding handled in `call`.
        elif isinstance(self.padding, str):
            tf_padding = self.padding.upper()
        else:
            tf_padding = self.padding

        return tf.nn.convolution(
            inputs,
            kernel,
            strides=list(self.strides),
            padding=tf_padding,
            dilations=list(self.dilation_rate),
        )
    def call(self, inputs):
        W_shape = self.kernel.shape.as_list()
        W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
        new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
        outputs = self.convolution_op(inputs, new_kernel)

        if self.use_bias:
            if self.data_format == 'channels_first':
                    outputs = tf.nn.bias_add(outputs, self.bias, data_format='NCHW')
            else:
                outputs = tf.nn.bias_add(outputs, self.bias, data_format='NHWC')
        if self.activation is not None:
            return self.activation(outputs)

        return outputs


class ConvSN2DTranspose(tf.keras.layers.Conv2DTranspose):

    def __init__(self, filters, kernel_size, power_iterations=1, **kwargs):
        super(ConvSN2DTranspose, self).__init__(filters, kernel_size, **kwargs)
        self.power_iterations = power_iterations


    def build(self, input_shape):
        super(ConvSN2DTranspose, self).build(input_shape)

        if self.data_format == 'channels_first':
            channel_axis = 1
        else:
            channel_axis = -1

        self.u = self.add_weight(self.name + '_u',
            shape=tuple([1, self.kernel.shape.as_list()[-1]]), 
            initializer=tf.initializers.RandomNormal(0, 1),
            trainable=False
        )

    def compute_spectral_norm(self, W, new_u, W_shape):
        for _ in range(self.power_iterations):

            new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
            new_u = l2normalize(tf.matmul(new_v, W))
            
        sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
        W_bar = W/sigma

        with tf.control_dependencies([self.u.assign(new_u)]):
          W_bar = tf.reshape(W_bar, W_shape)

        return W_bar

    def call(self, inputs):
        W_shape = self.kernel.shape.as_list()
        W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
        new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)

        inputs_shape = array_ops.shape(inputs)
        batch_size = inputs_shape[0]
        if self.data_format == 'channels_first':
          h_axis, w_axis = 2, 3
        else:
          h_axis, w_axis = 1, 2

        height, width = inputs_shape[h_axis], inputs_shape[w_axis]
        kernel_h, kernel_w = self.kernel_size
        stride_h, stride_w = self.strides

        if self.output_padding is None:
          out_pad_h = out_pad_w = None
        else:
          out_pad_h, out_pad_w = self.output_padding

        out_height = conv_utils.deconv_output_length(height,
                                                    kernel_h,
                                                    padding=self.padding,
                                                    output_padding=out_pad_h,
                                                    stride=stride_h,
                                                    dilation=self.dilation_rate[0])
        out_width = conv_utils.deconv_output_length(width,
                                                    kernel_w,
                                                    padding=self.padding,
                                                    output_padding=out_pad_w,
                                                    stride=stride_w,
                                                    dilation=self.dilation_rate[1])
        if self.data_format == 'channels_first':
          output_shape = (batch_size, self.filters, out_height, out_width)
        else:
          output_shape = (batch_size, out_height, out_width, self.filters)

        output_shape_tensor = array_ops.stack(output_shape)
        outputs = K.conv2d_transpose(
            inputs,
            new_kernel,
            output_shape_tensor,
            strides=self.strides,
            padding=self.padding,
            data_format=self.data_format,
            dilation_rate=self.dilation_rate)

        if not context.executing_eagerly():
          out_shape = self.compute_output_shape(inputs.shape)
          outputs.set_shape(out_shape)

        if self.use_bias:
          outputs = tf.nn.bias_add(
              outputs,
              self.bias,
              data_format=conv_utils.convert_data_format(self.data_format, ndim=4))

        if self.activation is not None:
          return self.activation(outputs)
        return outputs  
    
    
class DenseSN(Dense):
    
    def build(self, input_shape):
        super(DenseSN, self).build(input_shape)

        self.u = self.add_weight(self.name + '_u',
            shape=tuple([1, self.kernel.shape.as_list()[-1]]), 
            initializer=tf.initializers.RandomNormal(0, 1),
            trainable=False)
        
    def compute_spectral_norm(self, W, new_u, W_shape):
        new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
        new_u = l2normalize(tf.matmul(new_v, W))
        sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
        W_bar = W/sigma
        with tf.control_dependencies([self.u.assign(new_u)]):
          W_bar = tf.reshape(W_bar, W_shape)
        return W_bar
        
    def call(self, inputs):
        W_shape = self.kernel.shape.as_list()
        W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
        new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
        rank = len(inputs.shape)
        if rank > 2:
          outputs = standard_ops.tensordot(inputs, new_kernel, [[rank - 1], [0]])
          if not context.executing_eagerly():
            shape = inputs.shape.as_list()
            output_shape = shape[:-1] + [self.units]
            outputs.set_shape(output_shape)
        else:
          inputs = math_ops.cast(inputs, self._compute_dtype)
          if K.is_sparse(inputs):
            outputs = sparse_ops.sparse_tensor_dense_matmul(inputs, new_kernel)
          else:
            outputs = gen_math_ops.mat_mul(inputs, new_kernel)
        if self.use_bias:
          outputs = tf.nn.bias_add(outputs, self.bias)
        if self.activation is not None:
          return self.activation(outputs)
        return outputs

#Networks Architecture

init = tf.keras.initializers.he_uniform()

def conv2d(layer_input, filters, kernel_size=4, strides=2, padding='same', leaky=True, bnorm=True, sn=True):
  if leaky:
    Activ = LeakyReLU(alpha=0.2)
  else:
    Activ = ReLU()
  if sn:
    d = ConvSN2D(filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=init, use_bias=False)(layer_input)
  else:
    d = Conv2D(filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=init, use_bias=False)(layer_input)
  if bnorm:
    d = BatchNormalization()(d)
  d = Activ(d)
  return d

def deconv2d(layer_input, layer_res, filters, kernel_size=4, conc=True, scalev=False, bnorm=True, up=True, padding='same', strides=2):
  if up:
    u = UpSampling2D((1,2))(layer_input)
    u = ConvSN2D(filters, kernel_size, strides=(1,1), kernel_initializer=init, use_bias=False, padding=padding)(u)
  else:
    u = ConvSN2DTranspose(filters, kernel_size, strides=strides, kernel_initializer=init, use_bias=False, padding=padding)(layer_input)
  if bnorm:
    u = BatchNormalization()(u)
  u = LeakyReLU(alpha=0.2)(u)
  if conc:
    u = Concatenate()([u,layer_res])
  return u

#Extract function: splitting spectrograms
def extract_image(im):
  im1 = Cropping2D(((0,0), (0, 2*(im.shape[2]//3))))(im)
  im2 = Cropping2D(((0,0), (im.shape[2]//3,im.shape[2]//3)))(im)
  im3 = Cropping2D(((0,0), (2*(im.shape[2]//3), 0)))(im)
  return im1,im2,im3

#Assemble function: concatenating spectrograms
def assemble_image(lsim):
  im1,im2,im3 = lsim
  imh = Concatenate(2)([im1,im2,im3])
  return imh

#U-NET style architecture
def build_generator(input_shape):
  h,w,c = input_shape
  inp = Input(shape=input_shape)
  #downscaling
  g0 = tf.keras.layers.ZeroPadding2D((0,1))(inp)
  g1 = conv2d(g0, 256, kernel_size=(h,3), strides=1, padding='valid')
  g2 = conv2d(g1, 256, kernel_size=(1,9), strides=(1,2))
  g3 = conv2d(g2, 256, kernel_size=(1,7), strides=(1,2))
  #upscaling
  g4 = deconv2d(g3,g2, 256, kernel_size=(1,7), strides=(1,2))
  g5 = deconv2d(g4,g1, 256, kernel_size=(1,9), strides=(1,2), bnorm=False)
  g6 = ConvSN2DTranspose(1, kernel_size=(h,1), strides=(1,1), kernel_initializer=init, padding='valid', activation='tanh')(g5)
  return Model(inp,g6, name='G')

#Siamese Network
def build_siamese(input_shape):
  h,w,c = input_shape
  inp = Input(shape=input_shape)
  g1 = conv2d(inp, 256, kernel_size=(h,3), strides=1, padding='valid', sn=False)
  g2 = conv2d(g1, 256, kernel_size=(1,9), strides=(1,2), sn=False)
  g3 = conv2d(g2, 256, kernel_size=(1,7), strides=(1,2), sn=False)
  g4 = Flatten()(g3)
  g5 = Dense(vec_len)(g4)
  return Model(inp, g5, name='S')

#Discriminator (Critic) Network
def build_critic(input_shape):
  h,w,c = input_shape
  inp = Input(shape=input_shape)
  g1 = conv2d(inp, 512, kernel_size=(h,3), strides=1, padding='valid', bnorm=False)
  g2 = conv2d(g1, 512, kernel_size=(1,9), strides=(1,2), bnorm=False)
  g3 = conv2d(g2, 512, kernel_size=(1,7), strides=(1,2), bnorm=False)
  g4 = Flatten()(g3)
  g4 = DenseSN(1, kernel_initializer=init)(g4)
  return Model(inp, g4, name='C')

#Load past models from path to resume training or test
save_model_path = '/content/drive/MyDrive/weights' #@param {type:"string"}
def load(path):
  gen = build_generator((hop,shape,1))
  siam = build_siamese((hop,shape,1))
  critic = build_critic((hop,3*shape,1))
  gen.load_weights(path+'/gen.h5') 
  critic.load_weights(path+'/critic.h5')
  siam.load_weights(path+'/siam.h5')
  return gen,critic,siam

#Build models
def build():
  gen = build_generator((hop,shape,1))
  siam = build_siamese((hop,shape,1))
  critic = build_critic((hop,3*shape,1))                                          #the discriminator accepts as input spectrograms of triple the width of those generated by the generator
  return gen,critic,siam

#Show results mid-training
def save_test_image_full(path):
  a = testgena()
  print(a.shape)
  ab = gen(a, training=False)
  ab = testass(ab)
  a = testass(a)
  abwv = deprep(ab)
  awv = deprep(a)
  sf.write(path+'/new_file.wav', abwv, sr)
  IPython.display.display(IPython.display.Audio(np.squeeze(abwv), rate=sr))
  IPython.display.display(IPython.display.Audio(np.squeeze(awv), rate=sr))
  fig, axs = plt.subplots(ncols=2)
  axs[0].imshow(np.flip(a, -2), cmap=None)
  axs[0].axis('off')
  axs[0].set_title('Source')
  axs[1].imshow(np.flip(ab, -2), cmap=None)
  axs[1].axis('off')
  axs[1].set_title('Generated')
  plt.show()

#Save in training loop
def save_end(epoch,gloss,closs,mloss,n_save=3,save_path=save_model_path):                 #use custom save_path (i.e. Drive '../content/drive/My Drive/')
  if epoch % n_save == 0:
    print('Saving...')
    path = f'{save_path}/MELGANVC-{str(gloss)[:9]}-{str(closs)[:9]}-{str(mloss)[:9]}'
    os.mkdir(path)
    gen.save_weights(path+'/gen.h5')
    critic.save_weights(path+'/critic.h5')
    siam.save_weights(path+'/siam.h5')
    save_test_image_full(path)

#Get models and optimizers
def get_networks(shape, load_model=False, path=None):
  if not load_model:
    gen,critic,siam = build()
  else:
    gen,critic,siam = load(path)
  print('Built networks')

  opt_gen = Adam(0.0001, 0.5)
  opt_disc = Adam(0.0001, 0.5)

  return gen,critic,siam, [opt_gen,opt_disc]

#Set learning rate
def update_lr(lr):
  opt_gen.learning_rate = lr
  opt_disc.learning_rate = lr

#Build models and initialize optimizers
load_model_path='MELGANVC-0.4886211-0.5750153-0-20230612T163214Z-001\MELGANVC-0.4886211-0.5750153-0' #@param {type:"string"}
#If load_model=True, specify the path where the models are saved

gen,critic,siam, [opt_gen,opt_disc] = get_networks(shape, load_model=True,path="MELGANVC-0.4886211-0.5750153-0")

#After Training, use these functions to convert data with the generator and save the results

#Assembling generated Spectrogram chunks into final Spectrogram
def specass(a,spec):
  but=False
  con = np.array([])
  nim = a.shape[0]
  for i in range(nim-1):
    im = a[i]
    im = np.squeeze(im)
    if not but:
      con=im
      but=True
    else:
      con = np.concatenate((con,im), axis=1)
  diff = spec.shape[1]-(nim*shape)
  a = np.squeeze(a)
  con = np.concatenate((con,a[-1,:,-diff:]), axis=1)
  return np.squeeze(con)

#Splitting input spectrogram into different chunks to feed to the generator
def chopspec(spec):
  dsa=[]
  for i in range(spec.shape[1]//shape):
    im = spec[:,i*shape:i*shape+shape]
    im = np.reshape(im, (im.shape[0],im.shape[1],1))
    dsa.append(im)
  imlast = spec[:,-shape:]
  imlast = np.reshape(imlast, (imlast.shape[0],imlast.shape[1],1))
  dsa.append(imlast)
  return np.array(dsa, dtype=np.float32)

#Converting from source Spectrogram to target Spectrogram
def towave(spec, name, path='../content/', show=False):
  specarr = chopspec(spec)
  print(specarr.shape)
  a = specarr
  print('Generating...')
  ab = gen(a, training=False)
  print('Assembling and Converting...')
  a = specass(a,spec)
  ab = specass(ab,spec)
  awv = deprep(a)
  abwv = deprep(ab)
  print('Saving...')
  pathfin = f'{path}/{name}'
  try:
    os.mkdir(pathfin)
  except:
    pass
  sf.write(pathfin+'/AB.wav', abwv, sr)
  sf.write(pathfin+'/A.wav', awv, sr)
  print('Saved WAV!')
  IPython.display.display(IPython.display.Audio(np.squeeze(abwv), rate=sr))
  IPython.display.display(IPython.display.Audio(np.squeeze(awv), rate=sr))
  if show:
    fig, axs = plt.subplots(ncols=2)
    axs[0].imshow(np.flip(a, -2), cmap=None)
    axs[0].axis('off')
    axs[0].set_title('Source')
    axs[1].imshow(np.flip(ab, -2), cmap=None)
    axs[1].axis('off')
    axs[1].set_title('Generated')
    plt.show()
  return abwv