#Imports from __future__ import print_function, division import tensorflow as tf from glob import glob import scipy import soundfile as sf import matplotlib.pyplot as plt from IPython.display import clear_output from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Concatenate, Conv2D, Conv2DTranspose, GlobalAveragePooling2D, UpSampling2D, LeakyReLU, ReLU, Add, Multiply, Lambda, Dot, BatchNormalization, Activation, ZeroPadding2D, Cropping2D, Cropping1D from tensorflow.keras.models import Sequential, Model, load_model from tensorflow.keras.optimizers import Adam from tensorflow.keras.initializers import TruncatedNormal, he_normal import tensorflow.keras.backend as K import datetime import numpy as np import random import matplotlib.pyplot as plt import collections from PIL import Image from skimage.transform import resize import imageio import librosa import librosa.display from librosa.feature import melspectrogram import os import time import IPython #Hyperparameters hop=192 #hop size (window size = 6*hop) sr=16000 #sampling rate min_level_db=-100 #reference values to normalize data ref_level_db=20 shape=24 #length of time axis of split specrograms to feed to generator vec_len=128 #length of vector generated by siamese vector bs = 16 #batch size delta = 2. #constant for siamese loss #There seems to be a problem with Tensorflow STFT, so we'll be using pytorch to handle offline mel-spectrogram generation and waveform reconstruction #For waveform reconstruction, a gradient-based method is used: ''' Decorsière, Rémi, Peter L. Søndergaard, Ewen N. MacDonald, and Torsten Dau. "Inversion of auditory spectrograms, traditional spectrograms, and other envelope representations." IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, no. 1 (2014): 46-56.''' #ORIGINAL CODE FROM https://github.com/yoyololicon/spectrogram-inversion import torch import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm from functools import partial import math import heapq from torchaudio.transforms import MelScale, Spectrogram specobj = Spectrogram(n_fft=6*hop, win_length=6*hop, hop_length=hop, pad=0, power=2, normalized=True) specfunc = specobj.forward melobj = MelScale(n_mels=hop, sample_rate=sr, f_min=0.,n_stft=577) melfunc = melobj.forward def melspecfunc(waveform): specgram = specfunc(waveform) mel_specgram = melfunc(specgram) return mel_specgram def spectral_convergence(input, target): return 20 * ((input - target).norm().log10() - target.norm().log10()) def GRAD(spec, transform_fn, samples=None, init_x0=None, maxiter=1000, tol=1e-6, verbose=1, evaiter=10, lr=0.003): spec = torch.Tensor(spec) samples = (spec.shape[-1]*hop)-hop if init_x0 is None: init_x0 = spec.new_empty((1,samples)).normal_(std=1e-6) x = nn.Parameter(init_x0) T = spec criterion = nn.L1Loss() optimizer = torch.optim.Adam([x], lr=lr) bar_dict = {} metric_func = spectral_convergence bar_dict['spectral_convergence'] = 0 metric = 'spectral_convergence' init_loss = None with tqdm(total=maxiter, disable=not verbose) as pbar: for i in range(maxiter): optimizer.zero_grad() V = transform_fn(x) loss = criterion(V, T) loss.backward() optimizer.step() lr = lr*0.9999 for param_group in optimizer.param_groups: param_group['lr'] = lr if i % evaiter == evaiter - 1: with torch.no_grad(): V = transform_fn(x) bar_dict[metric] = metric_func(V, spec).item() l2_loss = criterion(V, spec).item() pbar.set_postfix(**bar_dict, loss=l2_loss) pbar.update(evaiter) return x.detach().view(-1).cpu() def normalize(S): return np.clip((((S - min_level_db) / -min_level_db)*2.)-1., -1, 1) def denormalize(S): return (((np.clip(S, -1, 1)+1.)/2.) * -min_level_db) + min_level_db def prep(wv,hop=192): S = np.array(torch.squeeze(melspecfunc(torch.Tensor(wv).view(1,-1))).detach().cpu()) S = librosa.power_to_db(S)-ref_level_db return normalize(S) def deprep(S): S = denormalize(S)+ref_level_db S = librosa.db_to_power(S) wv = GRAD(np.expand_dims(S,0), melspecfunc, maxiter=2000, evaiter=10, tol=1e-8) return np.array(np.squeeze(wv)) #Helper functions #Generate spectrograms from waveform array def tospec(data): specs=np.empty(data.shape[0], dtype=object) for i in range(data.shape[0]): x = data[i] S=prep(x) S = np.array(S, dtype=np.float32) specs[i]=np.expand_dims(S, -1) print(specs.shape) return specs #Generate multiple spectrograms with a determined length from single wav file def tospeclong(path, length=4*16000): x, sr = librosa.load(path,sr=16000) x,_ = librosa.effects.trim(x) loudls = librosa.effects.split(x, top_db=50) xls = np.array([]) for interv in loudls: xls = np.concatenate((xls,x[interv[0]:interv[1]])) x = xls num = x.shape[0]//length specs=np.empty(num, dtype=object) for i in range(num-1): a = x[i*length:(i+1)*length] S = prep(a) S = np.array(S, dtype=np.float32) try: sh = S.shape specs[i]=S except AttributeError: print('spectrogram failed') print(specs.shape) return specs #Waveform array from path of folder containing wav files def audio_array(path): ls = glob(f'{path}/*.wav') adata = [] for i in range(len(ls)): try: x, sr = tf.audio.decode_wav(tf.io.read_file(ls[i]), 1) except: print(ls[i],"is broken") continue x = np.array(x, dtype=np.float32) adata.append(x) return np.array(adata) #Concatenate spectrograms in array along the time axis def testass(a): but=False con = np.array([]) nim = a.shape[0] for i in range(nim): im = a[i] im = np.squeeze(im) if not but: con=im but=True else: con = np.concatenate((con,im), axis=1) return np.squeeze(con) #Split spectrograms in chunks with equal size def splitcut(data): ls = [] mini = 0 minifinal = 10*shape #max spectrogram length for i in range(data.shape[0]-1): if data[i].shape[1]<=data[i+1].shape[1]: mini = data[i].shape[1] else: mini = data[i+1].shape[1] if mini>=3*shape and mini=3*shape: for n in range(x.shape[1]//minifinal): ls.append(x[:,n*minifinal:n*minifinal+minifinal,:]) ls.append(x[:,-minifinal:,:]) return np.array(ls) #Adding Spectral Normalization to convolutional layers from tensorflow.python.keras.utils import conv_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import gen_math_ops from tensorflow.python.ops import standard_ops from tensorflow.python.eager import context from tensorflow.python.framework import tensor_shape def l2normalize(v, eps=1e-12): return v / (tf.norm(v) + eps) class ConvSN2D(tf.keras.layers.Conv2D): def __init__(self, filters, kernel_size, power_iterations=1, **kwargs): super(ConvSN2D, self).__init__(filters, kernel_size, **kwargs) self.power_iterations = power_iterations def build(self, input_shape): super(ConvSN2D, self).build(input_shape) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 self.u = self.add_weight(self.name + '_u', shape=tuple([1, self.kernel.shape.as_list()[-1]]), initializer=tf.initializers.RandomNormal(0, 1), trainable=False ) def compute_spectral_norm(self, W, new_u, W_shape): for _ in range(self.power_iterations): new_v = l2normalize(tf.matmul(new_u, tf.transpose(W))) new_u = l2normalize(tf.matmul(new_v, W)) sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u)) W_bar = W/sigma with tf.control_dependencies([self.u.assign(new_u)]): W_bar = tf.reshape(W_bar, W_shape) return W_bar def convolution_op(self, inputs, kernel): if self.padding == "causal": tf_padding = "VALID" # Causal padding handled in `call`. elif isinstance(self.padding, str): tf_padding = self.padding.upper() else: tf_padding = self.padding return tf.nn.convolution( inputs, kernel, strides=list(self.strides), padding=tf_padding, dilations=list(self.dilation_rate), ) def call(self, inputs): W_shape = self.kernel.shape.as_list() W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1])) new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape) outputs = self.convolution_op(inputs, new_kernel) if self.use_bias: if self.data_format == 'channels_first': outputs = tf.nn.bias_add(outputs, self.bias, data_format='NCHW') else: outputs = tf.nn.bias_add(outputs, self.bias, data_format='NHWC') if self.activation is not None: return self.activation(outputs) return outputs class ConvSN2DTranspose(tf.keras.layers.Conv2DTranspose): def __init__(self, filters, kernel_size, power_iterations=1, **kwargs): super(ConvSN2DTranspose, self).__init__(filters, kernel_size, **kwargs) self.power_iterations = power_iterations def build(self, input_shape): super(ConvSN2DTranspose, self).build(input_shape) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 self.u = self.add_weight(self.name + '_u', shape=tuple([1, self.kernel.shape.as_list()[-1]]), initializer=tf.initializers.RandomNormal(0, 1), trainable=False ) def compute_spectral_norm(self, W, new_u, W_shape): for _ in range(self.power_iterations): new_v = l2normalize(tf.matmul(new_u, tf.transpose(W))) new_u = l2normalize(tf.matmul(new_v, W)) sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u)) W_bar = W/sigma with tf.control_dependencies([self.u.assign(new_u)]): W_bar = tf.reshape(W_bar, W_shape) return W_bar def call(self, inputs): W_shape = self.kernel.shape.as_list() W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1])) new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape) inputs_shape = array_ops.shape(inputs) batch_size = inputs_shape[0] if self.data_format == 'channels_first': h_axis, w_axis = 2, 3 else: h_axis, w_axis = 1, 2 height, width = inputs_shape[h_axis], inputs_shape[w_axis] kernel_h, kernel_w = self.kernel_size stride_h, stride_w = self.strides if self.output_padding is None: out_pad_h = out_pad_w = None else: out_pad_h, out_pad_w = self.output_padding out_height = conv_utils.deconv_output_length(height, kernel_h, padding=self.padding, output_padding=out_pad_h, stride=stride_h, dilation=self.dilation_rate[0]) out_width = conv_utils.deconv_output_length(width, kernel_w, padding=self.padding, output_padding=out_pad_w, stride=stride_w, dilation=self.dilation_rate[1]) if self.data_format == 'channels_first': output_shape = (batch_size, self.filters, out_height, out_width) else: output_shape = (batch_size, out_height, out_width, self.filters) output_shape_tensor = array_ops.stack(output_shape) outputs = K.conv2d_transpose( inputs, new_kernel, output_shape_tensor, strides=self.strides, padding=self.padding, data_format=self.data_format, dilation_rate=self.dilation_rate) if not context.executing_eagerly(): out_shape = self.compute_output_shape(inputs.shape) outputs.set_shape(out_shape) if self.use_bias: outputs = tf.nn.bias_add( outputs, self.bias, data_format=conv_utils.convert_data_format(self.data_format, ndim=4)) if self.activation is not None: return self.activation(outputs) return outputs class DenseSN(Dense): def build(self, input_shape): super(DenseSN, self).build(input_shape) self.u = self.add_weight(self.name + '_u', shape=tuple([1, self.kernel.shape.as_list()[-1]]), initializer=tf.initializers.RandomNormal(0, 1), trainable=False) def compute_spectral_norm(self, W, new_u, W_shape): new_v = l2normalize(tf.matmul(new_u, tf.transpose(W))) new_u = l2normalize(tf.matmul(new_v, W)) sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u)) W_bar = W/sigma with tf.control_dependencies([self.u.assign(new_u)]): W_bar = tf.reshape(W_bar, W_shape) return W_bar def call(self, inputs): W_shape = self.kernel.shape.as_list() W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1])) new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape) rank = len(inputs.shape) if rank > 2: outputs = standard_ops.tensordot(inputs, new_kernel, [[rank - 1], [0]]) if not context.executing_eagerly(): shape = inputs.shape.as_list() output_shape = shape[:-1] + [self.units] outputs.set_shape(output_shape) else: inputs = math_ops.cast(inputs, self._compute_dtype) if K.is_sparse(inputs): outputs = sparse_ops.sparse_tensor_dense_matmul(inputs, new_kernel) else: outputs = gen_math_ops.mat_mul(inputs, new_kernel) if self.use_bias: outputs = tf.nn.bias_add(outputs, self.bias) if self.activation is not None: return self.activation(outputs) return outputs #Networks Architecture init = tf.keras.initializers.he_uniform() def conv2d(layer_input, filters, kernel_size=4, strides=2, padding='same', leaky=True, bnorm=True, sn=True): if leaky: Activ = LeakyReLU(alpha=0.2) else: Activ = ReLU() if sn: d = ConvSN2D(filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=init, use_bias=False)(layer_input) else: d = Conv2D(filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=init, use_bias=False)(layer_input) if bnorm: d = BatchNormalization()(d) d = Activ(d) return d def deconv2d(layer_input, layer_res, filters, kernel_size=4, conc=True, scalev=False, bnorm=True, up=True, padding='same', strides=2): if up: u = UpSampling2D((1,2))(layer_input) u = ConvSN2D(filters, kernel_size, strides=(1,1), kernel_initializer=init, use_bias=False, padding=padding)(u) else: u = ConvSN2DTranspose(filters, kernel_size, strides=strides, kernel_initializer=init, use_bias=False, padding=padding)(layer_input) if bnorm: u = BatchNormalization()(u) u = LeakyReLU(alpha=0.2)(u) if conc: u = Concatenate()([u,layer_res]) return u #Extract function: splitting spectrograms def extract_image(im): im1 = Cropping2D(((0,0), (0, 2*(im.shape[2]//3))))(im) im2 = Cropping2D(((0,0), (im.shape[2]//3,im.shape[2]//3)))(im) im3 = Cropping2D(((0,0), (2*(im.shape[2]//3), 0)))(im) return im1,im2,im3 #Assemble function: concatenating spectrograms def assemble_image(lsim): im1,im2,im3 = lsim imh = Concatenate(2)([im1,im2,im3]) return imh #U-NET style architecture def build_generator(input_shape): h,w,c = input_shape inp = Input(shape=input_shape) #downscaling g0 = tf.keras.layers.ZeroPadding2D((0,1))(inp) g1 = conv2d(g0, 256, kernel_size=(h,3), strides=1, padding='valid') g2 = conv2d(g1, 256, kernel_size=(1,9), strides=(1,2)) g3 = conv2d(g2, 256, kernel_size=(1,7), strides=(1,2)) #upscaling g4 = deconv2d(g3,g2, 256, kernel_size=(1,7), strides=(1,2)) g5 = deconv2d(g4,g1, 256, kernel_size=(1,9), strides=(1,2), bnorm=False) g6 = ConvSN2DTranspose(1, kernel_size=(h,1), strides=(1,1), kernel_initializer=init, padding='valid', activation='tanh')(g5) return Model(inp,g6, name='G') #Siamese Network def build_siamese(input_shape): h,w,c = input_shape inp = Input(shape=input_shape) g1 = conv2d(inp, 256, kernel_size=(h,3), strides=1, padding='valid', sn=False) g2 = conv2d(g1, 256, kernel_size=(1,9), strides=(1,2), sn=False) g3 = conv2d(g2, 256, kernel_size=(1,7), strides=(1,2), sn=False) g4 = Flatten()(g3) g5 = Dense(vec_len)(g4) return Model(inp, g5, name='S') #Discriminator (Critic) Network def build_critic(input_shape): h,w,c = input_shape inp = Input(shape=input_shape) g1 = conv2d(inp, 512, kernel_size=(h,3), strides=1, padding='valid', bnorm=False) g2 = conv2d(g1, 512, kernel_size=(1,9), strides=(1,2), bnorm=False) g3 = conv2d(g2, 512, kernel_size=(1,7), strides=(1,2), bnorm=False) g4 = Flatten()(g3) g4 = DenseSN(1, kernel_initializer=init)(g4) return Model(inp, g4, name='C') #Load past models from path to resume training or test save_model_path = '/content/drive/MyDrive/weights' #@param {type:"string"} def load(path): gen = build_generator((hop,shape,1)) siam = build_siamese((hop,shape,1)) critic = build_critic((hop,3*shape,1)) gen.load_weights(path+'/gen.h5') critic.load_weights(path+'/critic.h5') siam.load_weights(path+'/siam.h5') return gen,critic,siam #Build models def build(): gen = build_generator((hop,shape,1)) siam = build_siamese((hop,shape,1)) critic = build_critic((hop,3*shape,1)) #the discriminator accepts as input spectrograms of triple the width of those generated by the generator return gen,critic,siam #Show results mid-training def save_test_image_full(path): a = testgena() print(a.shape) ab = gen(a, training=False) ab = testass(ab) a = testass(a) abwv = deprep(ab) awv = deprep(a) sf.write(path+'/new_file.wav', abwv, sr) IPython.display.display(IPython.display.Audio(np.squeeze(abwv), rate=sr)) IPython.display.display(IPython.display.Audio(np.squeeze(awv), rate=sr)) fig, axs = plt.subplots(ncols=2) axs[0].imshow(np.flip(a, -2), cmap=None) axs[0].axis('off') axs[0].set_title('Source') axs[1].imshow(np.flip(ab, -2), cmap=None) axs[1].axis('off') axs[1].set_title('Generated') plt.show() #Save in training loop def save_end(epoch,gloss,closs,mloss,n_save=3,save_path=save_model_path): #use custom save_path (i.e. Drive '../content/drive/My Drive/') if epoch % n_save == 0: print('Saving...') path = f'{save_path}/MELGANVC-{str(gloss)[:9]}-{str(closs)[:9]}-{str(mloss)[:9]}' os.mkdir(path) gen.save_weights(path+'/gen.h5') critic.save_weights(path+'/critic.h5') siam.save_weights(path+'/siam.h5') save_test_image_full(path) #Get models and optimizers def get_networks(shape, load_model=False, path=None): if not load_model: gen,critic,siam = build() else: gen,critic,siam = load(path) print('Built networks') opt_gen = Adam(0.0001, 0.5) opt_disc = Adam(0.0001, 0.5) return gen,critic,siam, [opt_gen,opt_disc] #Set learning rate def update_lr(lr): opt_gen.learning_rate = lr opt_disc.learning_rate = lr #Build models and initialize optimizers load_model_path='MELGANVC-0.4886211-0.5750153-0-20230612T163214Z-001\MELGANVC-0.4886211-0.5750153-0' #@param {type:"string"} #If load_model=True, specify the path where the models are saved gen,critic,siam, [opt_gen,opt_disc] = get_networks(shape, load_model=True,path="MELGANVC-0.4886211-0.5750153-0") #After Training, use these functions to convert data with the generator and save the results #Assembling generated Spectrogram chunks into final Spectrogram def specass(a,spec): but=False con = np.array([]) nim = a.shape[0] for i in range(nim-1): im = a[i] im = np.squeeze(im) if not but: con=im but=True else: con = np.concatenate((con,im), axis=1) diff = spec.shape[1]-(nim*shape) a = np.squeeze(a) con = np.concatenate((con,a[-1,:,-diff:]), axis=1) return np.squeeze(con) #Splitting input spectrogram into different chunks to feed to the generator def chopspec(spec): dsa=[] for i in range(spec.shape[1]//shape): im = spec[:,i*shape:i*shape+shape] im = np.reshape(im, (im.shape[0],im.shape[1],1)) dsa.append(im) imlast = spec[:,-shape:] imlast = np.reshape(imlast, (imlast.shape[0],imlast.shape[1],1)) dsa.append(imlast) return np.array(dsa, dtype=np.float32) #Converting from source Spectrogram to target Spectrogram def towave(spec, name, path='../content/', show=False): specarr = chopspec(spec) print(specarr.shape) a = specarr print('Generating...') ab = gen(a, training=False) print('Assembling and Converting...') a = specass(a,spec) ab = specass(ab,spec) awv = deprep(a) abwv = deprep(ab) print('Saving...') pathfin = f'{path}/{name}' try: os.mkdir(pathfin) except: pass sf.write(pathfin+'/AB.wav', abwv, sr) sf.write(pathfin+'/A.wav', awv, sr) print('Saved WAV!') IPython.display.display(IPython.display.Audio(np.squeeze(abwv), rate=sr)) IPython.display.display(IPython.display.Audio(np.squeeze(awv), rate=sr)) if show: fig, axs = plt.subplots(ncols=2) axs[0].imshow(np.flip(a, -2), cmap=None) axs[0].axis('off') axs[0].set_title('Source') axs[1].imshow(np.flip(ab, -2), cmap=None) axs[1].axis('off') axs[1].set_title('Generated') plt.show() return abwv