Spaces:
Running
Running
File size: 14,179 Bytes
6710c89 e4a094e 6710c89 e200a3f 6710c89 bb95b6e 6710c89 0842402 eab44a6 0842402 e200a3f eab44a6 e200a3f 6710c89 e4a094e e200a3f e4a094e e200a3f e4a094e 6710c89 e200a3f 6710c89 e200a3f 6710c89 41536eb 6710c89 e200a3f 6710c89 fa41b8c 6710c89 e200a3f 6710c89 e200a3f 6710c89 e200a3f 6710c89 e200a3f 6710c89 e200a3f 6710c89 e200a3f 6710c89 ef47508 6710c89 bb95b6e 6710c89 ef47508 6710c89 bb95b6e 6710c89 ef47508 6710c89 ef47508 6710c89 ef47508 6710c89 41536eb ef47508 41536eb 6710c89 0842402 6710c89 e4a094e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import cv2
import gradio as gr
import numpy as np
import sys
import io
class Logger:
def __init__(self):
self.terminal = sys.stdout
self.log = io.BytesIO()
def write(self, message):
self.terminal.write(message)
self.log.write(bytes(message, encoding='utf-8'))
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
log = Logger()
sys.stdout = log
def read_logs():
out = log.log.getvalue().decode()
if out.count("\n") >= 30:
log.log = io.BytesIO()
sys.stdout.flush()
return out
with gr.Blocks(css=".output-image, .input-image, .image-preview {height: 600px !important}") as app:
gr.Markdown("""
# HINet (or INR-Harmonization) - A novel image Harmonization method based on Implicit neural Networks
## Harmonize any image you want! Arbitrary resolution, and arbitrary aspect ratio!
### Official Gradio Demo. See here for [**How to play with this Space**](https://github.com/WindVChen/INR-Harmonization/blob/main/assets/demo.gif)
**Since Gradio Space only support CPU, the speed may kind of slow. You may better download the code to run locally with a GPU.**
* Official Repo: [INR-Harmonization](https://github.com/WindVChen/INR-Harmonization)
""")
gr.HTML("""
<font color="#660000">(Notice: Sometimes it will encounter CONFLICTs when multiple users access this space at the same time, so we highly recommend you to duplicate this space and run in your private space for no queue on your own hardware</font>
<a href="https://huggingface.co/spaces/WindVChen/INR-Harmon?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
""")
gr.Markdown("""
## Quick Start
1. Select desired `Pretrained Model`.
2. Select a composite image, and then a mask with the same size.
3. Select the inference mode (for non-square image, only `Arbitrary Image` support). Also note that `Square Image` mode will be much faster than `Arbitrary Image` mode.
4. Set `Split Resolution` (Patches' resolution) or `Split Number` (How many patches, about N*N) according to the inference mode.
5. Click `Start` and enjoy it!
6. Click `Stop` if you want to stop the current process. You can also click `Reset` button any time to reinitialize the GUI.
""")
valid_checkpoints_dict = {"Resolution_256_iHarmony4": "Resolution_256_iHarmony4.pth",
"Resolution_1024_HAdobe5K": "Resolution_1024_HAdobe5K.pth",
"Resolution_2048_HAdobe5K": "Resolution_2048_HAdobe5K.pth",
"Resolution_RAW_HAdobe5K": "Resolution_RAW_HAdobe5K.pth",
"Resolution_RAW_iHarmony4": "Resolution_RAW_iHarmony4.pth"}
global_state = gr.State({
'pretrained_weight': valid_checkpoints_dict["Resolution_RAW_iHarmony4"],
})
with gr.Row():
with gr.Column():
form_composite_image = gr.Image(label='Input Composite image', type='pil').style(height=512)
gr.Examples(examples=sorted([os.path.join("demo", i) for i in os.listdir("demo") if "composite" in i]),
label="Composite Examples", inputs=form_composite_image, cache_examples=False)
with gr.Column():
form_mask_image = gr.Image(label='Input Mask image', type='pil', interactive=False).style(height=512)
gr.Examples(examples=sorted([os.path.join("demo", i) for i in os.listdir("demo") if "mask" in i]),
label="Mask Examples", inputs=form_mask_image, cache_examples=False)
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
with gr.Column(scale=2, min_width=10):
gr.Markdown(value='Model Selection', show_label=False)
with gr.Column(scale=4, min_width=10):
form_pretrained_dropdown = gr.Dropdown(
choices=list(valid_checkpoints_dict.values()),
label="Pretrained Model",
value=valid_checkpoints_dict["Resolution_RAW_iHarmony4"],
interactive=True
)
with gr.Row():
with gr.Column(scale=2, min_width=10):
gr.Markdown(value='Inference Mode', show_label=False)
with gr.Column(scale=4, min_width=10):
form_inference_mode = gr.Radio(
['Square Image', 'Arbitrary Image'],
value='Arbitrary Image',
interactive=False,
label='Mode',
)
with gr.Row():
with gr.Column(scale=2, min_width=10):
gr.Markdown(value='Split Parameter', show_label=False)
with gr.Column(scale=4, min_width=10):
form_split_res = gr.Slider(
minimum=0,
maximum=2048,
step=128,
value=256,
interactive=False,
label="Split Resolution",
)
form_split_num = gr.Number(
value=2,
interactive=False,
label="Split Number")
with gr.Row():
form_log = gr.Textbox(read_logs, label="Logs", interactive=False, type="text", every=1)
with gr.Column(scale=4):
form_harmonized_image = gr.Image(label='Harmonized Result', type='numpy', interactive=False).style(height=512)
form_start_btn = gr.Button("Start Harmonization", interactive=False)
form_reset_btn = gr.Button("Reset", interactive=True)
form_stop_btn = gr.Button("Stop", interactive=True)
def on_change_form_composite_image(form_composite_image):
if form_composite_image is None:
return gr.update(interactive=False, value=None), gr.update(value=None)
return gr.update(interactive=True, value=None), gr.update(value=None)
def on_change_form_mask_image(form_composite_image, form_mask_image):
if form_mask_image is None:
return gr.update(interactive=False), gr.update(
interactive=False if form_composite_image is None else True), gr.update(interactive=False), gr.update(
interactive=False), gr.update(interactive=False), gr.update(value=None)
if form_composite_image.size[:2] != form_mask_image.size[:2]:
raise gr.Error("Composite image and mask image should have the same resolution!")
else:
w, h = form_composite_image.size[:2]
if h != w or (h % 16 != 0):
return gr.update(value='Arbitrary Image', interactive=False), gr.update(interactive=True), gr.update(
interactive=True), gr.update(interactive=True, visible=True), gr.update(interactive=False,
value=-1, visible=False), gr.update(value=None)
else:
return gr.update(value='Square Image', interactive=True), gr.update(interactive=True), gr.update(
interactive=True), gr.update(interactive=False, visible=False), gr.update(interactive=True,
value=h // 2,
maximum=h,
minimum=h // 16,
step=h // 16, visible=True), gr.update(value=None)
form_composite_image.change(
on_change_form_composite_image,
inputs=[form_composite_image],
outputs=[form_mask_image, form_harmonized_image]
)
form_mask_image.change(
on_change_form_mask_image,
inputs=[form_composite_image, form_mask_image],
outputs=[form_inference_mode, form_mask_image, form_start_btn, form_split_num, form_split_res,
form_harmonized_image]
)
def on_change_form_split_num(form_composite_image, form_split_num):
w, h = form_composite_image.size[:2]
if form_split_num < 1:
return gr.update(value=1)
elif form_split_num > min(w, h):
return gr.update(value=min(w, h))
else:
return gr.update(value=form_split_num)
form_split_num.change(
on_change_form_split_num,
inputs=[form_composite_image, form_split_num],
outputs=[form_split_num]
)
def on_change_form_inference_mode(form_inference_mode):
if form_inference_mode == "Square Image":
return gr.update(interactive=True, visible=True), gr.update(interactive=False, visible=False)
else:
return gr.update(interactive=False, visible=False), gr.update(interactive=True, visible=True)
form_inference_mode.change(on_change_form_inference_mode, inputs=[form_inference_mode],
outputs=[form_split_res, form_split_num])
def on_click_form_start_btn(form_composite_image, form_mask_image, form_pretrained_dropdown, form_inference_mode,
form_split_res, form_split_num):
log.log = io.BytesIO()
print(f"Harmonizing image with {form_composite_image.size[1]}*{form_composite_image.size[0]}...")
if form_inference_mode == "Square Image":
from efficient_inference_for_square_image import parse_args, main_process, global_state
global_state[0] = 1
opt = parse_args()
opt.transform_mean = [.5, .5, .5]
opt.transform_var = [.5, .5, .5]
opt.pretrained = os.path.join("./pretrained_models", form_pretrained_dropdown)
opt.split_resolution = form_split_res
opt.save_path = None
opt.workers = 0
opt.device = "cpu"
composite_image = np.asarray(form_composite_image)
mask = np.asarray(form_mask_image)
try:
return cv2.cvtColor(
main_process(opt, composite_image=composite_image, mask=mask),
cv2.COLOR_BGR2RGB)
except:
raise gr.Error("Patches too big. Try to reduce the `split_res`!")
else:
from inference_for_arbitrary_resolution_image import parse_args, main_process, global_state
global_state[0] = 1
opt = parse_args()
opt.transform_mean = [.5, .5, .5]
opt.transform_var = [.5, .5, .5]
opt.pretrained = os.path.join("./pretrained_models", form_pretrained_dropdown)
opt.split_num = int(form_split_num)
opt.save_path = None
opt.workers = 0
opt.device = "cpu"
composite_image = np.asarray(form_composite_image)
mask = np.asarray(form_mask_image)
try:
return cv2.cvtColor(
main_process(opt, composite_image=composite_image, mask=mask),
cv2.COLOR_BGR2RGB)
except:
raise gr.Error("Patches too big. Try to increase the `split_num`!")
generate = form_start_btn.click(on_click_form_start_btn,
inputs=[form_composite_image, form_mask_image, form_pretrained_dropdown,
form_inference_mode,
form_split_res, form_split_num], outputs=[form_harmonized_image])
def on_click_form_reset_btn(form_inference_mode):
if form_inference_mode == "Square Image":
from efficient_inference_for_square_image import global_state
global_state[0] = 0
else:
from inference_for_arbitrary_resolution_image import global_state
global_state[0] = 0
log.log = io.BytesIO()
return gr.update(value=None), gr.update(value=None, interactive=True), gr.update(value=None,
interactive=False), gr.update(
interactive=False)
form_reset_btn.click(on_click_form_reset_btn,
inputs=[form_inference_mode],
outputs=[form_log, form_composite_image, form_mask_image, form_start_btn], cancels=generate)
def on_click_form_stop(form_inference_mode):
if form_inference_mode == "Square Image":
from efficient_inference_for_square_image import global_state
global_state[0] = 0
else:
from inference_for_arbitrary_resolution_image import global_state
global_state[0] = 0
log.log = io.BytesIO()
return gr.update(value=None), gr.update(value=None, interactive=True), gr.update(value=None,
interactive=False), gr.update(
interactive=False)
form_stop_btn.click(on_click_form_stop,
inputs=[form_inference_mode],
outputs=[form_log, form_composite_image, form_mask_image, form_start_btn], cancels=generate)
gr.HTML("""
<style>
.container {
position: absolute;
height: 50px;
text-align: center;
line-height: 50px;
width: 100%;
}
</style>
<div class="container">
Gradio demo supported by
<a href="https://github.com/WindVChen">WindVChen</a>
</div>
""")
gr.close_all()
app.queue(concurrency_count=1, max_size=1, api_open=False)
app.launch(show_api=False)
|