Spaces:
Running
Running
File size: 21,014 Bytes
033bd8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import torch
import cv2
import numpy as np
import torchvision
import os
import random
from utils.misc import prepare_cooridinate_input, customRandomCrop
from datasets.build_INR_dataset import Implicit2DGenerator
import albumentations
from albumentations import Resize, RandomResizedCrop, HorizontalFlip
from torch.utils.data import DataLoader
class dataset_generator(torch.utils.data.Dataset):
def __init__(self, dataset_txt, alb_transforms, torch_transforms, opt, area_keep_thresh=0.2, mode='Train'):
super().__init__()
self.opt = opt
self.root_path = opt.dataset_path
self.mode = mode
self.alb_transforms = alb_transforms
self.torch_transforms = torch_transforms
self.kp_t = area_keep_thresh
with open(dataset_txt, 'r') as f:
self.dataset_samples = [os.path.join(self.root_path, x.strip()) for x in f.readlines()]
self.INR_dataset = Implicit2DGenerator(opt, self.mode)
def __len__(self):
return len(self.dataset_samples)
def __getitem__(self, idx):
composite_image = self.dataset_samples[idx]
if self.opt.hr_train:
if self.opt.isFullRes:
"Since in dataset preprocessing, we resize the image in HAdobe5k to a lower resolution for " \
"quick loading, we need to change the path here to that of the original resolution of HAdobe5k " \
"if `opt.isFullRes` is set to True."
composite_image = composite_image.replace("HAdobe5k", "HAdobe5kori")
real_image = '_'.join(composite_image.split('_')[:2]).replace("composite_images", "real_images") + '.jpg'
mask = '_'.join(composite_image.split('_')[:-1]).replace("composite_images", "masks") + '.png'
composite_image = cv2.imread(composite_image)
composite_image = cv2.cvtColor(composite_image, cv2.COLOR_BGR2RGB)
real_image = cv2.imread(real_image)
real_image = cv2.cvtColor(real_image, cv2.COLOR_BGR2RGB)
mask = cv2.imread(mask)
mask = mask[:, :, 0].astype(np.float32) / 255.
"""
If set `opt.hr_train` to True:
Apply multi resolution crop for HR image train. Specifically, for 1024/2048 `input_size` (not fullres),
the training phase is first to RandomResizeCrop 1024/2048 `input_size`, then to random crop a `base_size`
patch to feed in multiINR process. For inference, just resize it.
While for fullres, the RandomResizeCrop is removed and just do a random crop. For inference, just keep the size.
BTW, we implement LR and HR mixing train. I.e., the following `random.random() < 0.5`
"""
if self.opt.hr_train:
if self.mode == 'Train' and self.opt.isFullRes:
if random.random() < 0.5: # LR mix training
mixTransform = albumentations.Compose(
[
RandomResizedCrop(self.opt.base_size, self.opt.base_size, scale=(0.5, 1.0)),
HorizontalFlip()],
additional_targets={'real_image': 'image', 'object_mask': 'image'}
)
origin_fg_ratio = mask.sum() / (mask.shape[0] * mask.shape[1])
origin_bg_ratio = 1 - origin_fg_ratio
"Ensure fg and bg not disappear after transformation"
valid_augmentation = False
transform_out = None
time = 0
while not valid_augmentation:
time += 1
# There are some extreme ratio pics, this code is to avoid being hindered by them.
if time == 20:
tmp_transform = albumentations.Compose(
[Resize(self.opt.base_size, self.opt.base_size)],
additional_targets={'real_image': 'image',
'object_mask': 'image'})
transform_out = tmp_transform(image=composite_image, real_image=real_image,
object_mask=mask)
valid_augmentation = True
else:
transform_out = mixTransform(image=composite_image, real_image=real_image,
object_mask=mask)
valid_augmentation = check_augmented_sample(transform_out['object_mask'],
origin_fg_ratio,
origin_bg_ratio,
self.kp_t)
composite_image = transform_out['image']
real_image = transform_out['real_image']
mask = transform_out['object_mask']
else: # Padding to ensure that the original resolution can be divided by 4. This is for pixel-aligned crop.
if real_image.shape[0] < 256:
bottom_pad = 256 - real_image.shape[0]
else:
bottom_pad = (4 - real_image.shape[0] % 4) % 4
if real_image.shape[1] < 256:
right_pad = 256 - real_image.shape[1]
else:
right_pad = (4 - real_image.shape[1] % 4) % 4
composite_image = cv2.copyMakeBorder(composite_image, 0, bottom_pad, 0, right_pad,
cv2.BORDER_REPLICATE)
real_image = cv2.copyMakeBorder(real_image, 0, bottom_pad, 0, right_pad, cv2.BORDER_REPLICATE)
mask = cv2.copyMakeBorder(mask, 0, bottom_pad, 0, right_pad, cv2.BORDER_REPLICATE)
origin_fg_ratio = mask.sum() / (mask.shape[0] * mask.shape[1])
origin_bg_ratio = 1 - origin_fg_ratio
"Ensure fg and bg not disappear after transformation"
valid_augmentation = False
transform_out = None
time = 0
if self.opt.hr_train:
if self.mode == 'Train':
if not self.opt.isFullRes:
if random.random() < 0.5: # LR mix training
mixTransform = albumentations.Compose(
[
RandomResizedCrop(self.opt.base_size, self.opt.base_size, scale=(0.5, 1.0)),
HorizontalFlip()],
additional_targets={'real_image': 'image', 'object_mask': 'image'}
)
while not valid_augmentation:
time += 1
# There are some extreme ratio pics, this code is to avoid being hindered by them.
if time == 20:
tmp_transform = albumentations.Compose(
[Resize(self.opt.base_size, self.opt.base_size)],
additional_targets={'real_image': 'image',
'object_mask': 'image'})
transform_out = tmp_transform(image=composite_image, real_image=real_image,
object_mask=mask)
valid_augmentation = True
else:
transform_out = mixTransform(image=composite_image, real_image=real_image,
object_mask=mask)
valid_augmentation = check_augmented_sample(transform_out['object_mask'],
origin_fg_ratio,
origin_bg_ratio,
self.kp_t)
else:
while not valid_augmentation:
time += 1
# There are some extreme ratio pics, this code is to avoid being hindered by them.
if time == 20:
tmp_transform = albumentations.Compose(
[Resize(self.opt.input_size, self.opt.input_size)],
additional_targets={'real_image': 'image',
'object_mask': 'image'})
transform_out = tmp_transform(image=composite_image, real_image=real_image,
object_mask=mask)
valid_augmentation = True
else:
transform_out = self.alb_transforms(image=composite_image, real_image=real_image,
object_mask=mask)
valid_augmentation = check_augmented_sample(transform_out['object_mask'],
origin_fg_ratio,
origin_bg_ratio,
self.kp_t)
composite_image = transform_out['image']
real_image = transform_out['real_image']
mask = transform_out['object_mask']
origin_fg_ratio = mask.sum() / (mask.shape[0] * mask.shape[1])
full_coord = prepare_cooridinate_input(mask).transpose(1, 2, 0)
tmp_transform = albumentations.Compose([Resize(self.opt.base_size, self.opt.base_size)],
additional_targets={'real_image': 'image',
'object_mask': 'image'})
transform_out = tmp_transform(image=composite_image, real_image=real_image, object_mask=mask)
compos_list = [self.torch_transforms(transform_out['image'])]
real_list = [self.torch_transforms(transform_out['real_image'])]
mask_list = [
torchvision.transforms.ToTensor()(transform_out['object_mask'][..., np.newaxis].astype(np.float32))]
coord_map_list = []
valid_augmentation = False
while not valid_augmentation:
# RSC strategy. To crop different resolutions.
transform_out, c_h, c_w = customRandomCrop([composite_image, real_image, mask, full_coord],
self.opt.base_size, self.opt.base_size)
valid_augmentation = check_hr_crop_sample(transform_out[2], origin_fg_ratio)
compos_list.append(self.torch_transforms(transform_out[0]))
real_list.append(self.torch_transforms(transform_out[1]))
mask_list.append(
torchvision.transforms.ToTensor()(transform_out[2][..., np.newaxis].astype(np.float32)))
coord_map_list.append(torchvision.transforms.ToTensor()(transform_out[3]))
coord_map_list.append(torchvision.transforms.ToTensor()(transform_out[3]))
for n in range(2):
tmp_comp = cv2.resize(composite_image, (
composite_image.shape[1] // 2 ** (n + 1), composite_image.shape[0] // 2 ** (n + 1)))
tmp_real = cv2.resize(real_image,
(real_image.shape[1] // 2 ** (n + 1), real_image.shape[0] // 2 ** (n + 1)))
tmp_mask = cv2.resize(mask, (mask.shape[1] // 2 ** (n + 1), mask.shape[0] // 2 ** (n + 1)))
tmp_coord = prepare_cooridinate_input(tmp_mask).transpose(1, 2, 0)
transform_out, c_h, c_w = customRandomCrop([tmp_comp, tmp_real, tmp_mask, tmp_coord],
self.opt.base_size // 2 ** (n + 1),
self.opt.base_size // 2 ** (n + 1), c_h, c_w)
compos_list.append(self.torch_transforms(transform_out[0]))
real_list.append(self.torch_transforms(transform_out[1]))
mask_list.append(
torchvision.transforms.ToTensor()(transform_out[2][..., np.newaxis].astype(np.float32)))
coord_map_list.append(torchvision.transforms.ToTensor()(transform_out[3]))
out_comp = compos_list
out_real = real_list
out_mask = mask_list
out_coord = coord_map_list
fg_INR_coordinates, bg_INR_coordinates, fg_INR_RGB, fg_transfer_INR_RGB, bg_INR_RGB = self.INR_dataset.generator(
self.torch_transforms, transform_out[0], transform_out[1], mask)
return {
'file_path': self.dataset_samples[idx],
'category': self.dataset_samples[idx].split("\\")[-1].split("/")[0],
'composite_image': out_comp,
'real_image': out_real,
'mask': out_mask,
'coordinate_map': out_coord,
'composite_image0': out_comp[0],
'real_image0': out_real[0],
'mask0': out_mask[0],
'coordinate_map0': out_coord[0],
'composite_image1': out_comp[1],
'real_image1': out_real[1],
'mask1': out_mask[1],
'coordinate_map1': out_coord[1],
'composite_image2': out_comp[2],
'real_image2': out_real[2],
'mask2': out_mask[2],
'coordinate_map2': out_coord[2],
'composite_image3': out_comp[3],
'real_image3': out_real[3],
'mask3': out_mask[3],
'coordinate_map3': out_coord[3],
'fg_INR_coordinates': fg_INR_coordinates,
'bg_INR_coordinates': bg_INR_coordinates,
'fg_INR_RGB': fg_INR_RGB,
'fg_transfer_INR_RGB': fg_transfer_INR_RGB,
'bg_INR_RGB': bg_INR_RGB
}
else:
if not self.opt.isFullRes:
tmp_transform = albumentations.Compose([Resize(self.opt.input_size, self.opt.input_size)],
additional_targets={'real_image': 'image',
'object_mask': 'image'})
transform_out = tmp_transform(image=composite_image, real_image=real_image, object_mask=mask)
coordinate_map = prepare_cooridinate_input(transform_out['object_mask'])
"Generate INR dataset."
mask = (torchvision.transforms.ToTensor()(
transform_out['object_mask']).squeeze() > 100 / 255.).view(-1)
mask = np.bool_(mask.numpy())
fg_INR_coordinates, bg_INR_coordinates, fg_INR_RGB, fg_transfer_INR_RGB, bg_INR_RGB = self.INR_dataset.generator(
self.torch_transforms, transform_out['image'], transform_out['real_image'], mask)
return {
'file_path': self.dataset_samples[idx],
'category': self.dataset_samples[idx].split("\\")[-1].split("/")[0],
'composite_image': self.torch_transforms(transform_out['image']),
'real_image': self.torch_transforms(transform_out['real_image']),
'mask': transform_out['object_mask'][np.newaxis, ...].astype(np.float32),
# Can automatically transfer to Tensor.
'coordinate_map': coordinate_map,
'fg_INR_coordinates': fg_INR_coordinates,
'bg_INR_coordinates': bg_INR_coordinates,
'fg_INR_RGB': fg_INR_RGB,
'fg_transfer_INR_RGB': fg_transfer_INR_RGB,
'bg_INR_RGB': bg_INR_RGB
}
else:
coordinate_map = prepare_cooridinate_input(mask)
"Generate INR dataset."
mask_tmp = (torchvision.transforms.ToTensor()(mask).squeeze() > 100 / 255.).view(-1)
mask_tmp = np.bool_(mask_tmp.numpy())
fg_INR_coordinates, bg_INR_coordinates, fg_INR_RGB, fg_transfer_INR_RGB, bg_INR_RGB = self.INR_dataset.generator(
self.torch_transforms, composite_image, real_image, mask_tmp)
return {
'file_path': self.dataset_samples[idx],
'category': self.dataset_samples[idx].split("\\")[-1].split("/")[0],
'composite_image': self.torch_transforms(composite_image),
'real_image': self.torch_transforms(real_image),
'mask': mask[np.newaxis, ...].astype(np.float32),
# Can automatically transfer to Tensor.
'coordinate_map': coordinate_map,
'fg_INR_coordinates': fg_INR_coordinates,
'bg_INR_coordinates': bg_INR_coordinates,
'fg_INR_RGB': fg_INR_RGB,
'fg_transfer_INR_RGB': fg_transfer_INR_RGB,
'bg_INR_RGB': bg_INR_RGB
}
while not valid_augmentation:
time += 1
# There are some extreme ratio pics, this code is to avoid being hindered by them.
if time == 20:
tmp_transform = albumentations.Compose([Resize(self.opt.input_size, self.opt.input_size)],
additional_targets={'real_image': 'image',
'object_mask': 'image'})
transform_out = tmp_transform(image=composite_image, real_image=real_image, object_mask=mask)
valid_augmentation = True
else:
transform_out = self.alb_transforms(image=composite_image, real_image=real_image, object_mask=mask)
valid_augmentation = check_augmented_sample(transform_out['object_mask'], origin_fg_ratio,
origin_bg_ratio,
self.kp_t)
coordinate_map = prepare_cooridinate_input(transform_out['object_mask'])
"Generate INR dataset."
mask = (torchvision.transforms.ToTensor()(transform_out['object_mask']).squeeze() > 100 / 255.).view(-1)
mask = np.bool_(mask.numpy())
fg_INR_coordinates, bg_INR_coordinates, fg_INR_RGB, fg_transfer_INR_RGB, bg_INR_RGB = self.INR_dataset.generator(
self.torch_transforms, transform_out['image'], transform_out['real_image'], mask)
return {
'file_path': self.dataset_samples[idx],
'category': self.dataset_samples[idx].split("\\")[-1].split("/")[0],
'composite_image': self.torch_transforms(transform_out['image']),
'real_image': self.torch_transforms(transform_out['real_image']),
'mask': transform_out['object_mask'][np.newaxis, ...].astype(np.float32),
# Can automatically transfer to Tensor.
'coordinate_map': coordinate_map,
'fg_INR_coordinates': fg_INR_coordinates,
'bg_INR_coordinates': bg_INR_coordinates,
'fg_INR_RGB': fg_INR_RGB,
'fg_transfer_INR_RGB': fg_transfer_INR_RGB,
'bg_INR_RGB': bg_INR_RGB
}
def check_augmented_sample(mask, origin_fg_ratio, origin_bg_ratio, area_keep_thresh):
current_fg_ratio = mask.sum() / (mask.shape[0] * mask.shape[1])
current_bg_ratio = 1 - current_fg_ratio
if current_fg_ratio < origin_fg_ratio * area_keep_thresh or current_bg_ratio < origin_bg_ratio * area_keep_thresh:
return False
return True
def check_hr_crop_sample(mask, origin_fg_ratio):
current_fg_ratio = mask.sum() / (mask.shape[0] * mask.shape[1])
if current_fg_ratio < 0.8 * origin_fg_ratio:
return False
return True
|