Winnie-Kay commited on
Commit
5af7c4c
·
1 Parent(s): fb544b2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -0
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Define the model path where the pre-trained model is saved on the Hugging Face model hub
2
+ model_path = "Winnie-Kay/Finetuned_bert_model"
3
+
4
+ # Initialize the tokenizer for the pre-trained model
5
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
6
+
7
+ # Load the configuration for the pre-trained model
8
+ config = AutoConfig.from_pretrained(model_path)
9
+
10
+ # Load the pre-trained model
11
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
12
+
13
+ # Define a function to preprocess the text data
14
+ def preprocess(text):
15
+ new_text = []
16
+ # Replace user mentions with '@user'
17
+ for t in text.split(" "):
18
+ t = '@user' if t.startswith('@') and len(t) > 1 else t
19
+ # Replace links with 'http'
20
+ t = 'http' if t.startswith('http') else t
21
+ new_text.append(t)
22
+ # Join the preprocessed text
23
+ return " ".join(new_text)
24
+
25
+ # Define a function to perform sentiment analysis on the input text
26
+ def sentiment_analysis(text):
27
+ # Preprocess the input text
28
+ text = preprocess(text)
29
+
30
+ # Tokenize the input text using the pre-trained tokenizer
31
+ encoded_input = tokenizer(text, return_tensors='pt')
32
+
33
+ # Feed the tokenized input to the pre-trained model and obtain output
34
+ output = model(**encoded_input)
35
+
36
+ # Obtain the prediction scores for the output
37
+ scores_ = output[0][0].detach().numpy()
38
+
39
+ # Apply softmax activation function to obtain probability distribution over the labels
40
+ scores_ = softmax(scores_)
41
+
42
+ # Format the output dictionary with the predicted scores
43
+ labels = ['Negative', 'Neutral', 'Positive']
44
+ scores = {l:float(s) for (l,s) in zip(labels, scores_) }
45
+
46
+ # Return the scores
47
+ return scores
48
+
49
+ # Define a Gradio interface to interact with the model
50
+ demo = gr.Interface(
51
+ fn=sentiment_analysis, # Function to perform sentiment analysis
52
+ inputs=gr.Textbox(placeholder="Write your tweet here..."), # Text input field
53
+ outputs="label", # Output type (here, we only display the label with the highest score)
54
+ interpretation="default", # Interpretation mode
55
+ examples=[["This is wonderful!"]]) # Example input(s) to display on the interface
56
+
57
+ # Launch the Gradio interface
58
+ demo.launch()