Spaces:
Runtime error
Runtime error
Commit
·
5af7c4c
1
Parent(s):
fb544b2
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define the model path where the pre-trained model is saved on the Hugging Face model hub
|
2 |
+
model_path = "Winnie-Kay/Finetuned_bert_model"
|
3 |
+
|
4 |
+
# Initialize the tokenizer for the pre-trained model
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
6 |
+
|
7 |
+
# Load the configuration for the pre-trained model
|
8 |
+
config = AutoConfig.from_pretrained(model_path)
|
9 |
+
|
10 |
+
# Load the pre-trained model
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
12 |
+
|
13 |
+
# Define a function to preprocess the text data
|
14 |
+
def preprocess(text):
|
15 |
+
new_text = []
|
16 |
+
# Replace user mentions with '@user'
|
17 |
+
for t in text.split(" "):
|
18 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
19 |
+
# Replace links with 'http'
|
20 |
+
t = 'http' if t.startswith('http') else t
|
21 |
+
new_text.append(t)
|
22 |
+
# Join the preprocessed text
|
23 |
+
return " ".join(new_text)
|
24 |
+
|
25 |
+
# Define a function to perform sentiment analysis on the input text
|
26 |
+
def sentiment_analysis(text):
|
27 |
+
# Preprocess the input text
|
28 |
+
text = preprocess(text)
|
29 |
+
|
30 |
+
# Tokenize the input text using the pre-trained tokenizer
|
31 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
32 |
+
|
33 |
+
# Feed the tokenized input to the pre-trained model and obtain output
|
34 |
+
output = model(**encoded_input)
|
35 |
+
|
36 |
+
# Obtain the prediction scores for the output
|
37 |
+
scores_ = output[0][0].detach().numpy()
|
38 |
+
|
39 |
+
# Apply softmax activation function to obtain probability distribution over the labels
|
40 |
+
scores_ = softmax(scores_)
|
41 |
+
|
42 |
+
# Format the output dictionary with the predicted scores
|
43 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
44 |
+
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
45 |
+
|
46 |
+
# Return the scores
|
47 |
+
return scores
|
48 |
+
|
49 |
+
# Define a Gradio interface to interact with the model
|
50 |
+
demo = gr.Interface(
|
51 |
+
fn=sentiment_analysis, # Function to perform sentiment analysis
|
52 |
+
inputs=gr.Textbox(placeholder="Write your tweet here..."), # Text input field
|
53 |
+
outputs="label", # Output type (here, we only display the label with the highest score)
|
54 |
+
interpretation="default", # Interpretation mode
|
55 |
+
examples=[["This is wonderful!"]]) # Example input(s) to display on the interface
|
56 |
+
|
57 |
+
# Launch the Gradio interface
|
58 |
+
demo.launch()
|