import os os.system('pip install torch') os.system('pip install transformers') os.system('pip install scipy') os.system('pip install gradio') import numpy as np from scipy.special import softmax import gradio as gr from transformers import ( AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, TFAutoModelForSequenceClassification) # Define the model path where the pre-trained model is saved on the Hugging Face model hub model_path = "Winnie-Kay/Finetuned_bert_model" # Initialize the tokenizer for the pre-trained model tokenizer = AutoTokenizer.from_pretrained(model_path) # Load the configuration for the pre-trained model config = AutoConfig.from_pretrained(model_path) # Load the pre-trained model model = AutoModelForSequenceClassification.from_pretrained(model_path) # Define a function to preprocess the text data def preprocess(text): new_text = [] # Replace user mentions with '@user' for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t # Replace links with 'http' t = 'http' if t.startswith('http') else t new_text.append(t) # Join the preprocessed text return " ".join(new_text) # Define a function to perform sentiment analysis on the input text def sentiment_analysis(text): # Preprocess the input text text = preprocess(text) # Tokenize the input text using the pre-trained tokenizer encoded_input = tokenizer(text, return_tensors='pt') # Feed the tokenized input to the pre-trained model and obtain output output = model(**encoded_input) # Obtain the prediction scores for the output scores_ = output[0][0].detach().numpy() # Apply softmax activation function to obtain probability distribution over the labels scores_ = softmax(scores_) # Format the output dictionary with the predicted scores labels = ['Negative', 'Neutral', 'Positive'] scores = {l:float(s) for (l,s) in zip(labels, scores_) } # Return the scores return scores # Define a Gradio interface to interact with the model demo = gr.Interface( fn=sentiment_analysis, # Function to perform sentiment analysis inputs=gr.Textbox(placeholder="Write your tweet here..."), # Text input field outputs="label", # Output type (here, we only display the label with the highest score) interpretation="default", # Interpretation mode examples=[["Have Fun with it...will be updated soon!"]],# Example input(s) to display on the interface image=gr.Image("https://www.reputationx.com/hubfs/what-is-sentiment-analysis-cover.jpg"), css= "body {background-color: black}" ) # Launch the Gradio interface demo.launch()