Spaces:
Runtime error
Runtime error
Commit
·
027c54f
1
Parent(s):
d3f4b27
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,27 @@
|
|
1 |
-
import streamlit as st
|
2 |
|
3 |
-
import
|
4 |
|
5 |
-
import
|
6 |
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
model1_path = "saisi/finetuned-Sentiment-classfication-ROBERTA-Base-model"
|
15 |
-
|
16 |
-
model2_path = "saisi/finetuned-Sentiment-classfication-DISTILBERT-model"
|
17 |
-
|
18 |
-
|
19 |
|
20 |
|
21 |
# Initialize the tokenizer and models for sentiment analysis
|
22 |
|
23 |
-
tokenizer1 = AutoTokenizer.from_pretrained(
|
24 |
|
25 |
-
model1 = AutoModelForSequenceClassification.from_pretrained(
|
26 |
|
27 |
-
tokenizer2 = AutoTokenizer.from_pretrained(
|
28 |
|
29 |
-
model2 = AutoModelForSequenceClassification.from_pretrained(
|
30 |
|
31 |
|
32 |
|
@@ -34,67 +29,151 @@ model2 = AutoModelForSequenceClassification.from_pretrained(model2_path)
|
|
34 |
# Define a function to preprocess the text data
|
35 |
|
36 |
def preprocess(text):
|
|
|
37 |
new_text = []
|
|
|
|
|
|
|
38 |
for t in text.split(" "):
|
|
|
39 |
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
40 |
-
|
|
|
|
|
41 |
t = 'http' if t.startswith('http') else t
|
42 |
-
new_text.append(t)
|
43 |
-
# Join the preprocessed text
|
44 |
|
45 |
-
|
46 |
|
|
|
47 |
|
|
|
48 |
|
49 |
|
50 |
# Define a function to perform sentiment analysis on the input text using model 1
|
51 |
|
52 |
def sentiment_analysis_model1(text):
|
|
|
|
|
|
|
53 |
text = preprocess(text)
|
|
|
|
|
54 |
# Tokenize the input text using the pre-trained tokenizer
|
|
|
55 |
encoded_input = tokenizer1(text, return_tensors='pt')
|
|
|
|
|
56 |
# Feed the tokenized input to the pre-trained model and obtain output
|
|
|
57 |
output = model1(**encoded_input)
|
|
|
|
|
58 |
# Obtain the prediction scores for the output
|
|
|
59 |
scores_ = output[0][0].detach().numpy()
|
|
|
|
|
60 |
# Apply softmax activation function to obtain probability distribution over the labels
|
|
|
61 |
scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
|
|
|
|
|
62 |
# Format the output dictionary with the predicted scores
|
|
|
63 |
labels = ['Negative', 'Positive']
|
|
|
64 |
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
65 |
-
# Return the scores
|
66 |
-
return scores
|
67 |
|
68 |
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
# Define a function to perform sentiment analysis on the input text using model 2
|
72 |
|
73 |
def sentiment_analysis_model2(text):
|
|
|
|
|
|
|
74 |
text = preprocess(text)
|
|
|
|
|
75 |
# Tokenize the input text using the pre-trained tokenizer
|
76 |
-
|
|
|
|
|
|
|
77 |
# Feed the tokenized input to the pre-trained model and obtain output
|
78 |
-
|
|
|
|
|
|
|
79 |
# Obtain the prediction scores for the output
|
|
|
80 |
scores_ = output[0][0].detach().numpy()
|
|
|
|
|
81 |
# Apply softmax activation function to obtain probability distribution over the labels
|
|
|
82 |
scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
|
|
|
|
|
83 |
# Format the output dictionary with the predicted scores
|
84 |
-
|
|
|
|
|
85 |
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
86 |
-
|
|
|
|
|
|
|
87 |
return scores
|
88 |
|
89 |
|
90 |
# Define the Streamlit app
|
|
|
91 |
def app():
|
|
|
92 |
# Define the app title
|
|
|
93 |
st.title("Sentiment Analysis")
|
|
|
94 |
# Define the input field
|
|
|
95 |
text_input = st.text_input("Enter text:")
|
|
|
|
|
96 |
# Define the model selection dropdown
|
|
|
97 |
model_selection = st.selectbox("Select a model:", ["Model 1", "Model 2"])
|
|
|
|
|
98 |
# Perform sentiment analysis when the submit button is clicked
|
|
|
99 |
if st.button("Submit"):
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
import streamlit as st
|
3 |
|
4 |
+
from PIL import Image
|
5 |
|
6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
|
8 |
|
9 |
+
# Define the model names or identifiers
|
10 |
|
11 |
+
model1_name = "Winnie-Kay/Sentiment-Analysis-Roberta-bases"
|
12 |
|
13 |
+
model2_name = "Winnie-Kay/Finetuned_BertModel_SentimentAnalysis"
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
# Initialize the tokenizer and models for sentiment analysis
|
17 |
|
18 |
+
tokenizer1 = AutoTokenizer.from_pretrained(model1_name)
|
19 |
|
20 |
+
model1 = AutoModelForSequenceClassification.from_pretrained(model1_name)
|
21 |
|
22 |
+
tokenizer2 = AutoTokenizer.from_pretrained(model2_name)
|
23 |
|
24 |
+
model2 = AutoModelForSequenceClassification.from_pretrained(model2_name)
|
25 |
|
26 |
|
27 |
|
|
|
29 |
# Define a function to preprocess the text data
|
30 |
|
31 |
def preprocess(text):
|
32 |
+
|
33 |
new_text = []
|
34 |
+
|
35 |
+
# Replace user mentions with '@user'
|
36 |
+
|
37 |
for t in text.split(" "):
|
38 |
+
|
39 |
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
40 |
+
|
41 |
+
# Replace links with 'http'
|
42 |
+
|
43 |
t = 'http' if t.startswith('http') else t
|
|
|
|
|
44 |
|
45 |
+
new_text.append(t)
|
46 |
|
47 |
+
# Join the preprocessed text
|
48 |
|
49 |
+
return " ".join(new_text)
|
50 |
|
51 |
|
52 |
# Define a function to perform sentiment analysis on the input text using model 1
|
53 |
|
54 |
def sentiment_analysis_model1(text):
|
55 |
+
|
56 |
+
# Preprocess the input text
|
57 |
+
|
58 |
text = preprocess(text)
|
59 |
+
|
60 |
+
|
61 |
# Tokenize the input text using the pre-trained tokenizer
|
62 |
+
|
63 |
encoded_input = tokenizer1(text, return_tensors='pt')
|
64 |
+
|
65 |
+
|
66 |
# Feed the tokenized input to the pre-trained model and obtain output
|
67 |
+
|
68 |
output = model1(**encoded_input)
|
69 |
+
|
70 |
+
|
71 |
# Obtain the prediction scores for the output
|
72 |
+
|
73 |
scores_ = output[0][0].detach().numpy()
|
74 |
+
|
75 |
+
|
76 |
# Apply softmax activation function to obtain probability distribution over the labels
|
77 |
+
|
78 |
scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
|
79 |
+
|
80 |
+
|
81 |
# Format the output dictionary with the predicted scores
|
82 |
+
|
83 |
labels = ['Negative', 'Positive']
|
84 |
+
|
85 |
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
|
|
|
|
86 |
|
87 |
|
88 |
+
# Return the scores
|
89 |
+
|
90 |
+
return scores
|
91 |
|
92 |
|
93 |
# Define a function to perform sentiment analysis on the input text using model 2
|
94 |
|
95 |
def sentiment_analysis_model2(text):
|
96 |
+
|
97 |
+
# Preprocess the input text
|
98 |
+
|
99 |
text = preprocess(text)
|
100 |
+
|
101 |
+
|
102 |
# Tokenize the input text using the pre-trained tokenizer
|
103 |
+
|
104 |
+
encoded_input = tokenizer2(text, return_tensors='pt')
|
105 |
+
|
106 |
+
|
107 |
# Feed the tokenized input to the pre-trained model and obtain output
|
108 |
+
|
109 |
+
output = model2(**encoded_input)
|
110 |
+
|
111 |
+
|
112 |
# Obtain the prediction scores for the output
|
113 |
+
|
114 |
scores_ = output[0][0].detach().numpy()
|
115 |
+
|
116 |
+
|
117 |
# Apply softmax activation function to obtain probability distribution over the labels
|
118 |
+
|
119 |
scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
|
120 |
+
|
121 |
+
|
122 |
# Format the output dictionary with the predicted scores
|
123 |
+
|
124 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
125 |
+
|
126 |
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
127 |
+
|
128 |
+
|
129 |
+
# Return the scores
|
130 |
+
|
131 |
return scores
|
132 |
|
133 |
|
134 |
# Define the Streamlit app
|
135 |
+
|
136 |
def app():
|
137 |
+
|
138 |
# Define the app title
|
139 |
+
|
140 |
st.title("Sentiment Analysis")
|
141 |
+
|
142 |
# Define the input field
|
143 |
+
|
144 |
text_input = st.text_input("Enter text:")
|
145 |
+
|
146 |
+
|
147 |
# Define the model selection dropdown
|
148 |
+
|
149 |
model_selection = st.selectbox("Select a model:", ["Model 1", "Model 2"])
|
150 |
+
|
151 |
+
|
152 |
# Perform sentiment analysis when the submit button is clicked
|
153 |
+
|
154 |
if st.button("Submit"):
|
155 |
+
|
156 |
+
if text_input:
|
157 |
+
|
158 |
+
if model_selection == "Model 1":
|
159 |
+
|
160 |
+
# Perform sentiment analysis using model 1
|
161 |
+
|
162 |
+
scores = sentiment_analysis_model1(text_input)
|
163 |
+
|
164 |
+
st.write(f"Model 1 predicted scores: {scores}")
|
165 |
+
|
166 |
+
else:
|
167 |
+
|
168 |
+
# Perform sentiment analysis using model 2
|
169 |
+
|
170 |
+
scores = sentiment_analysis_model2(text_input)
|
171 |
+
|
172 |
+
st.write(f"Model 2 predicted scores: {scores}")
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|