Spaces:
Runtime error
Runtime error
Commit
·
18ef847
1
Parent(s):
8c483b2
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,188 @@
|
|
1 |
-
import
|
2 |
-
os.system('pip install torch')
|
3 |
-
os.system('pip install transformers')
|
4 |
-
os.system('pip install scipy')
|
5 |
-
os.system('pip install gradio')
|
6 |
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
from transformers import
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# Define the
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
# Initialize the tokenizer for the pre-trained model
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
|
21 |
-
# Load the configuration for the pre-trained model
|
22 |
-
config = AutoConfig.from_pretrained(model_path)
|
23 |
|
24 |
-
# Load the pre-trained model
|
25 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
26 |
|
27 |
# Define a function to preprocess the text data
|
|
|
28 |
def preprocess(text):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
#
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import transformers
|
4 |
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# Define the paths of the pre-trained models
|
13 |
+
|
14 |
+
model1_path = "saisi/finetuned-Sentiment-classfication-ROBERTA-Base-model"
|
15 |
+
|
16 |
+
model2_path = "saisi/finetuned-Sentiment-classfication-DISTILBERT-model"
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
# Initialize the tokenizer and models for sentiment analysis
|
22 |
+
|
23 |
+
tokenizer1 = AutoTokenizer.from_pretrained(model1_path)
|
24 |
+
|
25 |
+
model1 = AutoModelForSequenceClassification.from_pretrained(model1_path)
|
26 |
+
|
27 |
+
tokenizer2 = AutoTokenizer.from_pretrained(model2_path)
|
28 |
+
|
29 |
+
model2 = AutoModelForSequenceClassification.from_pretrained(model2_path)
|
30 |
|
|
|
|
|
31 |
|
|
|
|
|
32 |
|
|
|
|
|
33 |
|
34 |
# Define a function to preprocess the text data
|
35 |
+
|
36 |
def preprocess(text):
|
37 |
+
|
38 |
+
new_text = []
|
39 |
+
|
40 |
+
# Replace user mentions with '@user'
|
41 |
+
|
42 |
+
for t in text.split(" "):
|
43 |
+
|
44 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
45 |
+
|
46 |
+
# Replace links with 'http'
|
47 |
+
|
48 |
+
t = 'http' if t.startswith('http') else t
|
49 |
+
|
50 |
+
new_text.append(t)
|
51 |
+
|
52 |
+
# Join the preprocessed text
|
53 |
+
|
54 |
+
return " ".join(new_text)
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
# Define a function to perform sentiment analysis on the input text using model 1
|
60 |
+
|
61 |
+
def sentiment_analysis_model1(text):
|
62 |
+
|
63 |
+
# Preprocess the input text
|
64 |
+
|
65 |
+
text = preprocess(text)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
# Tokenize the input text using the pre-trained tokenizer
|
71 |
+
|
72 |
+
encoded_input = tokenizer1(text, return_tensors='pt')
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
# Feed the tokenized input to the pre-trained model and obtain output
|
77 |
+
|
78 |
+
output = model1(**encoded_input)
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
# Obtain the prediction scores for the output
|
83 |
+
|
84 |
+
scores_ = output[0][0].detach().numpy()
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
# Apply softmax activation function to obtain probability distribution over the labels
|
89 |
+
|
90 |
+
scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
# Format the output dictionary with the predicted scores
|
95 |
+
|
96 |
+
labels = ['Negative', 'Positive']
|
97 |
+
|
98 |
+
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
# Return the scores
|
103 |
+
|
104 |
+
return scores
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
# Define a function to perform sentiment analysis on the input text using model 2
|
110 |
+
|
111 |
+
def sentiment_analysis_model2(text):
|
112 |
+
|
113 |
+
# Preprocess the input text
|
114 |
+
|
115 |
+
text = preprocess(text)
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
# Tokenize the input text using the pre-trained tokenizer
|
121 |
+
|
122 |
+
encoded_input = tokenizer2(text, return_tensors='pt')
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
# Feed the tokenized input to the pre-trained model and obtain output
|
127 |
+
|
128 |
+
output = model2(**encoded_input)
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
# Obtain the prediction scores for the output
|
133 |
+
|
134 |
+
scores_ = output[0][0].detach().numpy()
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
# Apply softmax activation function to obtain probability distribution over the labels
|
139 |
+
|
140 |
+
scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
# Format the output dictionary with the predicted scores
|
145 |
+
|
146 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
147 |
+
|
148 |
+
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
# Return the scores
|
153 |
+
|
154 |
+
return scores
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
# Define the Streamlit app
|
160 |
+
|
161 |
+
def app():
|
162 |
+
|
163 |
+
# Define the app title
|
164 |
+
|
165 |
+
st.title("Sentiment Analysis")
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
# Define the input field
|
171 |
+
|
172 |
+
text_input = st.text_input("Enter text:")
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
# Define the model selection dropdown
|
178 |
+
|
179 |
+
model_selection = st.selectbox("Select a model:", ["Model 1", "Model 2"])
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
# Perform sentiment analysis when the submit button is clicked
|
185 |
+
|
186 |
+
if st.button("Submit"):
|
187 |
+
|
188 |
+
if text_input
|