Winnie-Kay commited on
Commit
73e88e8
·
1 Parent(s): 23b9d9a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -102
app.py CHANGED
@@ -51,45 +51,19 @@ def preprocess(text):
51
 
52
  def sentiment_analysis_model1(text):
53
  text = preprocess(text)
54
-
55
-
56
-
57
-
58
-     # Tokenize the input text using the pre-trained tokenizer
59
-
60
-     encoded_input = tokenizer1(text, return_tensors='pt')
61
-
62
-    
63
-
64
-     # Feed the tokenized input to the pre-trained model and obtain output
65
-
66
-     output = model1(**encoded_input)
67
-
68
-    
69
-
70
-     # Obtain the prediction scores for the output
71
-
72
-     scores_ = output[0][0].detach().numpy()
73
-
74
-    
75
-
76
-     # Apply softmax activation function to obtain probability distribution over the labels
77
-
78
-     scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
79
-
80
-    
81
-
82
-     # Format the output dictionary with the predicted scores
83
-
84
-     labels = ['Negative', 'Positive']
85
-
86
-     scores = {l:float(s) for (l,s) in zip(labels, scores_) }
87
-
88
-    
89
-
90
-     # Return the scores
91
-
92
-     return scores
93
 
94
 
95
 
@@ -97,74 +71,31 @@ def sentiment_analysis_model1(text):
97
  # Define a function to perform sentiment analysis on the input text using model 2
98
 
99
  def sentiment_analysis_model2(text):
100
-
101
-     # Preprocess the input text
102
-
103
-     text = preprocess(text)
104
-
105
-
106
-
107
-
108
-     # Tokenize the input text using the pre-trained tokenizer
109
-
110
-     encoded_input = tokenizer2(text, return_tensors='pt')
111
-
112
-    
113
-
114
-     # Feed the tokenized input to the pre-trained model and obtain output
115
-
116
-     output = model2(**encoded_input)
117
-
118
-    
119
-
120
-     # Obtain the prediction scores for the output
121
-
122
-     scores_ = output[0][0].detach().numpy()
123
-
124
-    
125
-
126
-     # Apply softmax activation function to obtain probability distribution over the labels
127
-
128
-     scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
129
-
130
-    
131
-
132
-     # Format the output dictionary with the predicted scores
133
-
134
-     labels = ['Negative', 'Neutral', 'Positive']
135
-
136
-     scores = {l:float(s) for (l,s) in zip(labels, scores_) }
137
-
138
-    
139
-
140
-     # Return the scores
141
-
142
-     return scores
143
-
144
-
145
 
146
 
147
  # Define the Streamlit app
148
 
149
  def app():
150
-
151
-     # Define the app title
152
-
153
-     st.title("Sentiment Analysis")
154
-
155
-
156
-
157
-
158
-     # Define the input field
159
-
160
-     text_input = st.text_input("Enter text:")
161
-
162
-
163
-
164
-
165
-     # Define the model selection dropdown
166
-
167
-     model_selection = st.selectbox("Select a model:", ["Model 1", "Model 2"])
168
 
169
 
170
 
 
51
 
52
  def sentiment_analysis_model1(text):
53
  text = preprocess(text)
54
+ # Tokenize the input text using the pre-trained tokenizer
55
+ encoded_input = tokenizer1(text, return_tensors='pt')
56
+ # Feed the tokenized input to the pre-trained model and obtain output
57
+ output = model1(**encoded_input)
58
+ # Obtain the prediction scores for the output
59
+ scores_ = output[0][0].detach().numpy()
60
+ # Apply softmax activation function to obtain probability distribution over the labels
61
+ scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
62
+ # Format the output dictionary with the predicted scores
63
+ labels = ['Negative', 'Positive']
64
+ scores = {l:float(s) for (l,s) in zip(labels, scores_) }
65
+ # Return the scores
66
+ return scores
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
 
69
 
 
71
  # Define a function to perform sentiment analysis on the input text using model 2
72
 
73
  def sentiment_analysis_model2(text):
74
+ text = preprocess(text)
75
+ # Tokenize the input text using the pre-trained tokenizer
76
+ encoded_input = tokenizer1(text, return_tensors='pt')
77
+ # Feed the tokenized input to the pre-trained model and obtain output
78
+ output = model1(**encoded_input)
79
+ # Obtain the prediction scores for the output
80
+ scores_ = output[0][0].detach().numpy()
81
+ # Apply softmax activation function to obtain probability distribution over the labels
82
+ scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
83
+ # Format the output dictionary with the predicted scores
84
+ labels = ['Negative', 'Positive']
85
+ scores = {l:float(s) for (l,s) in zip(labels, scores_) }
86
+ # Return the scores
87
+ return scores
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
 
90
  # Define the Streamlit app
91
 
92
  def app():
93
+   # Define the app title
94
+ st.title("Sentiment Analysis")
95
+ # Define the input field
96
+ text_input = st.text_input("Enter text:")
97
+ # Define the model selection dropdown
98
+ model_selection = st.selectbox("Select a model:", ["Model 1", "Model 2"])
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
 
101