Spaces:
Runtime error
Runtime error
Commit
·
73e88e8
1
Parent(s):
23b9d9a
Update app.py
Browse files
app.py
CHANGED
@@ -51,45 +51,19 @@ def preprocess(text):
|
|
51 |
|
52 |
def sentiment_analysis_model1(text):
|
53 |
text = preprocess(text)
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
# Obtain the prediction scores for the output
|
71 |
-
|
72 |
-
scores_ = output[0][0].detach().numpy()
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# Apply softmax activation function to obtain probability distribution over the labels
|
77 |
-
|
78 |
-
scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
# Format the output dictionary with the predicted scores
|
83 |
-
|
84 |
-
labels = ['Negative', 'Positive']
|
85 |
-
|
86 |
-
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
# Return the scores
|
91 |
-
|
92 |
-
return scores
|
93 |
|
94 |
|
95 |
|
@@ -97,74 +71,31 @@ def sentiment_analysis_model1(text):
|
|
97 |
# Define a function to perform sentiment analysis on the input text using model 2
|
98 |
|
99 |
def sentiment_analysis_model2(text):
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
# Feed the tokenized input to the pre-trained model and obtain output
|
115 |
-
|
116 |
-
output = model2(**encoded_input)
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
# Obtain the prediction scores for the output
|
121 |
-
|
122 |
-
scores_ = output[0][0].detach().numpy()
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
# Apply softmax activation function to obtain probability distribution over the labels
|
127 |
-
|
128 |
-
scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
# Format the output dictionary with the predicted scores
|
133 |
-
|
134 |
-
labels = ['Negative', 'Neutral', 'Positive']
|
135 |
-
|
136 |
-
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
# Return the scores
|
141 |
-
|
142 |
-
return scores
|
143 |
-
|
144 |
-
|
145 |
|
146 |
|
147 |
# Define the Streamlit app
|
148 |
|
149 |
def app():
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
# Define the input field
|
159 |
-
|
160 |
-
text_input = st.text_input("Enter text:")
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
# Define the model selection dropdown
|
166 |
-
|
167 |
-
model_selection = st.selectbox("Select a model:", ["Model 1", "Model 2"])
|
168 |
|
169 |
|
170 |
|
|
|
51 |
|
52 |
def sentiment_analysis_model1(text):
|
53 |
text = preprocess(text)
|
54 |
+
# Tokenize the input text using the pre-trained tokenizer
|
55 |
+
encoded_input = tokenizer1(text, return_tensors='pt')
|
56 |
+
# Feed the tokenized input to the pre-trained model and obtain output
|
57 |
+
output = model1(**encoded_input)
|
58 |
+
# Obtain the prediction scores for the output
|
59 |
+
scores_ = output[0][0].detach().numpy()
|
60 |
+
# Apply softmax activation function to obtain probability distribution over the labels
|
61 |
+
scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
|
62 |
+
# Format the output dictionary with the predicted scores
|
63 |
+
labels = ['Negative', 'Positive']
|
64 |
+
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
65 |
+
# Return the scores
|
66 |
+
return scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
|
|
|
71 |
# Define a function to perform sentiment analysis on the input text using model 2
|
72 |
|
73 |
def sentiment_analysis_model2(text):
|
74 |
+
text = preprocess(text)
|
75 |
+
# Tokenize the input text using the pre-trained tokenizer
|
76 |
+
encoded_input = tokenizer1(text, return_tensors='pt')
|
77 |
+
# Feed the tokenized input to the pre-trained model and obtain output
|
78 |
+
output = model1(**encoded_input)
|
79 |
+
# Obtain the prediction scores for the output
|
80 |
+
scores_ = output[0][0].detach().numpy()
|
81 |
+
# Apply softmax activation function to obtain probability distribution over the labels
|
82 |
+
scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()
|
83 |
+
# Format the output dictionary with the predicted scores
|
84 |
+
labels = ['Negative', 'Positive']
|
85 |
+
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
86 |
+
# Return the scores
|
87 |
+
return scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
# Define the Streamlit app
|
91 |
|
92 |
def app():
|
93 |
+
# Define the app title
|
94 |
+
st.title("Sentiment Analysis")
|
95 |
+
# Define the input field
|
96 |
+
text_input = st.text_input("Enter text:")
|
97 |
+
# Define the model selection dropdown
|
98 |
+
model_selection = st.selectbox("Select a model:", ["Model 1", "Model 2"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
|