File size: 10,658 Bytes
0af9841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import yaml
import random
import librosa
import numpy as np
import phonemizer
import torch
import torchaudio

from collections import OrderedDict
from munch import Munch
from nltk.tokenize import word_tokenize
from cached_path import cached_path


# Local or project imports
from models import *
from espeak_util import set_espeak_library
from Utils.PLBERT.util import load_plbert
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule

# -----------------------------------------------------------------------------
# SEEDS AND DETERMINISM
# -----------------------------------------------------------------------------
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

# -----------------------------------------------------------------------------
# CONSTANTS / CHARACTERS
# -----------------------------------------------------------------------------
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"

symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)

dicts = {symbols[i]: i for i in range(len(symbols))}


# -----------------------------------------------------------------------------
# TEXT CLEANER
# -----------------------------------------------------------------------------
class TextCleaner:
    """
    Maps individual characters to their corresponding indices.
    If an unknown character is found, it prints a warning.
    """

    def __init__(self, dummy=None):
        self.word_index_dictionary = dicts
        print(len(dicts))

    def __call__(self, text):
        indexes = []
        for char in text:
            try:
                indexes.append(self.word_index_dictionary[char])
            except KeyError:
                print("CLEAN", text)
        return indexes


textclenaer = TextCleaner()

# -----------------------------------------------------------------------------
# AUDIO PROCESSING
# -----------------------------------------------------------------------------
to_mel = torchaudio.transforms.MelSpectrogram(
    n_mels=80, n_fft=2048, win_length=1200, hop_length=300
)

mean, std = -4, 4


def preprocess(wave: np.ndarray) -> torch.Tensor:
    """
    Convert a NumPy audio array into a normalized mel spectrogram tensor.
    """
    wave_tensor = torch.from_numpy(wave).float()
    mel_tensor = to_mel(wave_tensor)
    mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
    return mel_tensor


def length_to_mask(lengths: torch.Tensor) -> torch.Tensor:
    """
    Return a boolean mask based on the lengths of each item in the batch.
    """
    max_len = lengths.max()
    mask = (
        torch.arange(max_len).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    )
    mask = torch.gt(mask + 1, lengths.unsqueeze(1))
    return mask


# -----------------------------------------------------------------------------
# MISC UTILS
# -----------------------------------------------------------------------------
def recursive_munch(d):
    """
    Recursively convert dictionaries to Munch objects.
    """
    if isinstance(d, dict):
        return Munch((k, recursive_munch(v)) for k, v in d.items())
    elif isinstance(d, list):
        return [recursive_munch(v) for v in d]
    else:
        return d


def compute_style(path: str) -> torch.Tensor:
    """
    Load an audio file, trim it, resample if needed, then
    compute and return a style vector by passing through the style encoder
    and predictor encoder.
    """
    wave, sr = librosa.load(path, sr=24000)
    audio, _ = librosa.effects.trim(wave, top_db=30)
    if sr != 24000:
        audio = librosa.resample(audio, sr, 24000)

    mel_tensor = preprocess(audio).to(device)
    with torch.no_grad():
        ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
        ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))

    return torch.cat([ref_s, ref_p], dim=1)


# -----------------------------------------------------------------------------
# DEVICE SELECTION
# -----------------------------------------------------------------------------
device = "cpu"
if torch.cuda.is_available():
    device = "cuda"
elif torch.backends.mps.is_available():
    # Optionally enable MPS if appropriate (commented out by default).
    # device = "mps"
    pass

# -----------------------------------------------------------------------------
# PHONEMIZER INITIALIZATION
# -----------------------------------------------------------------------------
set_espeak_library()
global_phonemizer = phonemizer.backend.EspeakBackend(
    language="en-us", preserve_punctuation=True, with_stress=True
)

# -----------------------------------------------------------------------------
# LOAD CONFIG
# -----------------------------------------------------------------------------
config = yaml.safe_load(open("Utils/config.yml"))

# -----------------------------------------------------------------------------
# LOAD MODELS
# -----------------------------------------------------------------------------
ASR_config = config.get("ASR_config", False)
ASR_path = config.get("ASR_path", False)
text_aligner = load_ASR_models(ASR_path, ASR_config)

F0_path = config.get("F0_path", False)
pitch_extractor = load_F0_models(F0_path)

from Utils.PLBERT.util import load_plbert

BERT_path = config.get("PLBERT_dir", False)
plbert = load_plbert(BERT_path)

model_params = recursive_munch(config["model_params"])
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]

params_whole = torch.load(
    str(
        cached_path(
            "hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth"
        )
    ),
    map_location="cpu",
)
params = params_whole["net"]

# Load model states
for key in model:
    if key in params:
        print(f"{key} loaded")
        try:
            model[key].load_state_dict(params[key])
        except RuntimeError:
            state_dict = params[key]
            new_state_dict = OrderedDict()
            for k, v in state_dict.items():
                name = k[7:]  # remove `module.`
                new_state_dict[name] = v
            model[key].load_state_dict(new_state_dict, strict=False)

_ = [model[key].eval() for key in model]

sampler = DiffusionSampler(
    model.diffusion.diffusion,
    sampler=ADPM2Sampler(),
    sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0),
    clamp=False,
)


# -----------------------------------------------------------------------------
# INFERENCE
# -----------------------------------------------------------------------------
def inference(
    text: str,
    ref_s: torch.Tensor,
    alpha: float = 0.3,
    beta: float = 0.7,
    diffusion_steps: int = 5,
    embedding_scale: float = 1,
    speed: float = 1.2,
):
    """
    Perform TTS inference using StyleTTS2 architecture.

    Args:
        text (str): The input text to be synthesized.
        ref_s (torch.Tensor): The reference style/predictor embedding.
        alpha (float): Interpolation factor for the style encoder.
        beta (float): Interpolation factor for the predictor encoder.
        diffusion_steps (int): Number of diffusion steps.
        embedding_scale (float): Scaling factor for the BERT embedding.
        speed (float): Speed factor e.g. 1.2 will speed up the audio by 20%

    Returns:
        np.ndarray: Audio waveform (synthesized speech).
    """
    text = text.strip()
    # Phonemize
    ps = global_phonemizer.phonemize([text])
    ps = word_tokenize(ps[0])
    ps = " ".join(ps)
    tokens = textclenaer(ps)
    tokens.insert(0, 0)  # Insert padding index at the start
    tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)

    with torch.no_grad():
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
        text_mask = length_to_mask(input_lengths).to(device)

        # Text encoder
        t_en = model.text_encoder(tokens, input_lengths, text_mask)

        # BERT duration encoding
        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
        d_en = model.bert_encoder(bert_dur).transpose(-1, -2)

        # Sampler for style
        noise = torch.randn((1, 256)).unsqueeze(1).to(device)
        s_pred = sampler(
            noise=noise,
            embedding=bert_dur,
            embedding_scale=embedding_scale,
            features=ref_s,
            num_steps=diffusion_steps,
        ).squeeze(1)

        # Split the style vector
        s_style = s_pred[:, 128:]
        s_ref = s_pred[:, :128]

        # Interpolate with ref_s
        s_ref = alpha * s_ref + (1 - alpha) * ref_s[:, :128]
        s_style = beta * s_style + (1 - beta) * ref_s[:, 128:]

        # Predictor
        d = model.predictor.text_encoder(d_en, s_style, input_lengths, text_mask)
        x, _ = model.predictor.lstm(d)
        duration = model.predictor.duration_proj(x)
        duration = torch.sigmoid(duration).sum(axis=-1)
        duration = duration / speed  # change speed

        # Create alignment
        pred_dur = torch.round(duration.squeeze()).clamp(min=1)
        pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))

        c_frame = 0
        for i in range(pred_aln_trg.size(0)):
            pd = int(pred_dur[i].data)
            pred_aln_trg[i, c_frame : c_frame + pd] = 1
            c_frame += pd

        # Encode prosody
        en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
        if model_params.decoder.type == "hifigan":
            asr_new = torch.zeros_like(en)
            asr_new[:, :, 0] = en[:, :, 0]
            asr_new[:, :, 1:] = en[:, :, 0:-1]
            en = asr_new

        F0_pred, N_pred = model.predictor.F0Ntrain(en, s_style)

        # ASR-based encoding
        asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
        if model_params.decoder.type == "hifigan":
            asr_new = torch.zeros_like(asr)
            asr_new[:, :, 0] = asr[:, :, 0]
            asr_new[:, :, 1:] = asr[:, :, 0:-1]
            asr = asr_new

        out = model.decoder(asr, F0_pred, N_pred, s_ref.squeeze().unsqueeze(0))

    # Return waveform without the last 50 samples (as per original code)
    return out.squeeze().cpu().numpy()[..., :-50]