File size: 20,593 Bytes
0af9841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import json
import os
import argparse
import random
import string

import numpy as np
import soundfile as sf  # Alias for clarity
import torch

import inference
from txtsplit import txtsplit  # Import txtsplit
from typing import Optional, Tuple, List

VOICES_JSON_PATH = "voices.json"  # Contains your known style vectors
RANDOM_VOICES_JSON_PATH = "random_voices.json"  # We'll store newly sampled vectors here


##############################################################################
# JSON LOAD/SAVE
##############################################################################
def load_json(path: str) -> dict:
    """
    Load existing style vectors from the given JSON file.

    Additionally, validates that all style vectors have the same length.

    Args:
        path (str): Path to the JSON file.

    Returns:
        dict: Loaded JSON data.
    """
    data = {}
    if os.path.exists(path):
        with open(path, "r") as f:
            data = json.load(f)
        # Verify all vectors have the same length
        lengths = set(len(vec) for vec in data.values())
        if len(lengths) > 1:
            raise ValueError(
                f"Inconsistent vector lengths found in '{path}': {lengths}. "
                "All style vectors must have the same dimensionality."
            )
        print(f"Loaded {len(data)} style vectors from '{path}'.")
    else:
        print(f"No existing '{path}' found. Starting with an empty dictionary.")
    return data


def save_json(data: dict, path: str) -> None:
    """
    Save a dict of style vectors to the given JSON file.

    Args:
        data (dict): Data to save.
        path (str): Path to the JSON file.
    """
    with open(path, "w") as f:
        json.dump(data, f, indent=2)
    print(f"Saved {len(data)} style vectors to '{path}'.")


##############################################################################
# GAUSSIAN FIT AND SAMPLING
##############################################################################


def fit_gaussian_to_voices(voices_data: dict) -> Tuple[np.ndarray, np.ndarray]:
    """
    Fit a Gaussian distribution (mean & cov) to the style vectors in 'voices_data'.
    'voices_data' is a dict: { "key.wav": <list-of-floats>, ... }

    Args:
        voices_data (dict): Dictionary containing style vectors.

    Returns:
        Tuple[np.ndarray, np.ndarray]: Mean and covariance of the fitted Gaussian.
    """
    all_vecs = []

    for key, data in voices_data.items():
        # Convert to array
        arr = np.array(data, dtype=np.float32)
        # Squeeze out any dimension of size 1
        arr = np.squeeze(arr)

        if arr.ndim == 1:
            # It's shape (D,)
            all_vecs.append(arr)
        else:
            # If still not 1D, we skip or warn
            print(
                f"Skipping '{key}' because shape is {arr.shape}, not 1D after squeeze."
            )

    # Must have at least 2 valid vectors to compute a meaningful covariance
    if len(all_vecs) < 2:
        raise ValueError(
            "Need at least 2 valid style vectors to fit a Gaussian distribution.\n"
            "Check that each entry is 1D (or (1,D) which can be squeezed)."
        )

    # Stack into (N, D)
    mat = np.stack(all_vecs, axis=0)  # shape => (N, D)
    # Sanity check
    if mat.ndim != 2:
        raise ValueError("Style vectors must collectively form a 2D array (N, D).")

    # Compute mean & covariance
    mean = np.mean(mat, axis=0)  # shape (D,)
    cov = np.cov(mat, rowvar=False)  # shape (D, D)
    print("Fitted Gaussian distribution to style vectors.")
    return mean, cov


def sample_random_style(mean: np.ndarray, cov: np.ndarray) -> torch.Tensor:
    """
    Sample a random style vector from a Gaussian distribution.

    Args:
        mean (np.ndarray): Mean vector of the Gaussian.
        cov (np.ndarray): Covariance matrix of the Gaussian.

    Returns:
        torch.Tensor: Sampled style vector as a tensor of shape (1, D).
    """
    # Sample from multivariate normal distribution
    z = np.random.multivariate_normal(mean, cov)
    # Convert to torch tensor
    style_tensor = torch.tensor(z, dtype=torch.float32)
    # Unsqueeze to shape (1, D)
    style_tensor = style_tensor.unsqueeze(0)
    print(f"Sampled a new random style vector with shape {style_tensor.shape}.")
    return style_tensor


##############################################################################
# UTILITIES
##############################################################################


def parse_speed(value) -> float:
    """
    Convert 'value' into a float between 0.5 and 2.0 based on custom logic.

    Examples:
        parse_speed("120%") -> 1.2
        parse_speed(0.3)    -> 0.5 (clamped)
        parse_speed(5)      -> 2.0 (clamped)
        parse_speed("100%") -> 1.0
        parse_speed(1)      -> 1.0
        parse_speed(3)      -> 2.0 (clamped)
        parse_speed(50)     -> 0.5
        parse_speed(100)    -> 1.0
        parse_speed(130)    -> 1.3
        parse_speed("150")  -> 1.5
    """

    # 1) If string ends with '%', parse percentage
    if isinstance(value, str):
        value = value.strip()
        if value.endswith("%"):
            numeric_str = value[:-1].strip()  # remove '%' suffix
            try:
                f = float(numeric_str)
            except ValueError:
                print(
                    f"Invalid speed format '{value}'. Falling back to default speed 1.0."
                )
                f = 100.0  # fallback to "100%" -> 1.0
            speed = f / 100.0
        else:
            # It's a normal string; parse as float
            try:
                f = float(value)
            except ValueError:
                print(
                    f"Invalid speed format '{value}'. Falling back to default speed 1.0."
                )
                f = 100.0  # fallback to "100" -> 1.0
            # If f >= 10, treat as f/100. Example: 50 -> 0.5, 150 -> 1.5
            speed = f / 100.0 if f >= 10 else f
    else:
        # 2) If not string, parse as float
        try:
            f = float(value)
        except ValueError:
            print(f"Invalid speed value '{value}'. Falling back to default speed 1.0.")
            f = 1.0  # fallback to 1.0
        # If f >= 10, treat as f/100
        speed = f / 100.0 if f >= 10 else f

    # 3) Clamp to [0.5, 2.0]
    clamped_speed = max(0.5, min(2.0, speed))
    if clamped_speed != speed:
        print(f"Speed {speed} clamped to {clamped_speed}.")
    else:
        print(f"Parsed speed: {clamped_speed}")
    return clamped_speed


def concatenate_audios(audios: List[np.ndarray]) -> np.ndarray:
    """
    Concatenate a list of NumPy audio arrays into a single array.

    Args:
        audios (List[np.ndarray]): List of audio waveforms to concatenate.

    Returns:
        np.ndarray: Concatenated audio waveform.
    """
    return np.concatenate(audios, axis=0)


##############################################################################
# SYNTHESIS CORE FUNCTION
##############################################################################
def synthesize_audio(
    text_chunks: List[str],
    style_vec: torch.Tensor,
    speed: float,
    alpha: float = 0.3,
    beta: float = 0.7,
    diffusion_steps: int = 7,
    embedding_scale: float = 1.0,
) -> Optional[np.ndarray]:
    """
    Core function to synthesize audio from text chunks and a style vector.

    Args:
        text_chunks (List[str]): List of text segments to synthesize.
        style_vec (torch.Tensor): Style vector tensor of shape (1, D).
        speed (float): Parsed speed factor.
        alpha (float): Alpha parameter for inference.
        beta (float): Beta parameter for inference.
        diffusion_steps (int): Number of diffusion steps for inference.
        embedding_scale (float): Embedding scale parameter.

    Returns:
        Optional[np.ndarray]: Concatenated audio waveform, or None if synthesis fails.
    """
    audios = []
    for idx, chunk in enumerate(text_chunks, 1):
        print(f"Synthesizing chunk {idx}/{len(text_chunks)}...")
        audio_segment = inference.inference(
            chunk,
            style_vec,
            alpha=alpha,
            beta=beta,
            diffusion_steps=diffusion_steps,
            embedding_scale=embedding_scale,
            speed=speed,
        )
        if audio_segment is not None:
            audios.append(audio_segment)
            print(f"Chunk {idx} synthesized successfully.")
        else:
            print(f"Inference returned None for text segment {idx}: {chunk[:30]}...")

    if not audios:
        print("No audio segments were generated.")
        return None

    # Concatenate all audio segments
    print("Concatenating audio segments...")
    full_audio = concatenate_audios(audios)
    print(f"Concatenated audio length: {len(full_audio)} samples.")
    return full_audio


##############################################################################
# TTS USING A RANDOMLY SAMPLED STYLE
##############################################################################
def tts_randomized(
    text: str, speed: float = 1.2
) -> Tuple[Optional[np.ndarray], Optional[torch.Tensor]]:
    """
    1) Loads style vectors from voices.json
    2) Fits a Gaussian to those vectors
    3) Samples a new style vector from that distribution
    4) Saves it in random_voices.json
    5) Synthesizes TTS using that random style, handling long texts.

    Args:
        text (str): The text to be synthesized.
        speed (float): Speed of the generated audio.

    Returns:
        Tuple[Optional[np.ndarray], Optional[torch.Tensor]]: (audio_waveform, style_vector)
    """
    # Load known style vectors from voices.json
    voices_data = load_json(VOICES_JSON_PATH)
    if not voices_data:
        print(f"No data found in '{VOICES_JSON_PATH}'; cannot sample a random style.")
        return None, None

    # Fit Gaussian
    try:
        mean, cov = fit_gaussian_to_voices(voices_data)
    except ValueError as e:
        print(f"Error fitting Gaussian: {e}")
        return None, None

    # Sample new vector
    random_style_tensor = sample_random_style(mean, cov)

    # Optionally create a random key for storing
    random_key = "random_" + "".join(random.choices(string.digits, k=6))
    print(f"Generated random style key: '{random_key}'")

    # Save in random_voices.json
    random_voices_data = load_json(RANDOM_VOICES_JSON_PATH)
    random_voices_data[random_key] = random_style_tensor.squeeze(0).tolist()
    save_json(random_voices_data, RANDOM_VOICES_JSON_PATH)
    print(
        f"Saved random style vector to '{RANDOM_VOICES_JSON_PATH}' under key '{random_key}'."
    )

    # Parse speed
    speed = parse_speed(speed)

    # Split text into manageable chunks using txtsplit
    print("Splitting text into chunks...")
    text_chunks = txtsplit(text)
    print(f"Text split into {len(text_chunks)} chunks.")

    # Synthesize audio using the core function
    full_audio = synthesize_audio(
        text_chunks=text_chunks, style_vec=random_style_tensor, speed=speed
    )

    return full_audio, random_style_tensor


##############################################################################
# NORMAL (NON-RANDOM) TTS LOGIC
##############################################################################
def get_or_compute_style_vector(key_or_path: str, voices_data: dict) -> torch.Tensor:
    """
    If key_or_path is in voices_data, load it.
    If it's a file path, compute style from audio.
    Otherwise, raise an error.

    Args:
        key_or_path (str): Voice key or file path.
        voices_data (dict): Dictionary of existing style vectors.

    Returns:
        torch.Tensor: Style vector tensor of shape (1, D).
    """
    if key_or_path in voices_data:
        print(f"Found style vector for '{key_or_path}' in '{VOICES_JSON_PATH}'.")
        style_vec = torch.tensor(voices_data[key_or_path], dtype=torch.float32)
    elif os.path.isfile(key_or_path):
        print(
            f"No existing style for '{key_or_path}'. Attempting to compute from audio..."
        )
        style_vec = inference.compute_style(key_or_path)
        if style_vec is None:
            raise ValueError(f"Failed to compute style vector from '{key_or_path}'.")
        voices_data[key_or_path] = style_vec.squeeze(0).tolist()
        save_json(voices_data, VOICES_JSON_PATH)
        print(
            f"Computed and saved new style vector for '{key_or_path}' to '{VOICES_JSON_PATH}'."
        )
    else:
        raise ValueError(
            f"'{key_or_path}' not found in '{VOICES_JSON_PATH}' and is not a valid file path."
        )

    print(f"Original style vector shape: {style_vec.shape}")

    # Ensure style_vec is 2D: (1, D)
    if style_vec.dim() == 1:
        style_vec = style_vec.unsqueeze(0)
        print(f"Unsqueezed style vector to shape: {style_vec.shape}")
    elif style_vec.dim() == 3:
        style_vec = style_vec.squeeze(1)
        print(f"Squeezed style vector to shape: {style_vec.shape}")
    elif style_vec.dim() != 2:
        raise ValueError(
            f"Unexpected style vector dimensions: {style_vec.shape}. Expected 2D tensor."
        )

    print(f"Processed style vector shape: {style_vec.shape}")
    return style_vec


def validate_style_vectors(voices_data: dict):
    """
    Validates that all style vectors in voices_data have the same dimensionality.

    Args:
        voices_data (dict): Dictionary containing style vectors.

    Raises:
        ValueError: If inconsistent vector lengths are found.
    """
    if not voices_data:
        print("No style vectors to validate.")
        return

    lengths = set(len(vec) for vec in voices_data.values())
    if len(lengths) > 1:
        raise ValueError(
            f"Inconsistent style vector lengths found: {lengths}. "
            "All style vectors must have the same dimensionality."
        )
    print("All style vectors have consistent lengths.")


def tts_normal(text: str, voice: str, speed: float = 1.2) -> Optional[np.ndarray]:
    """
    Load an existing style vector from voices.json if it exists and has 'voice'.
    Otherwise, if 'voice' is a valid .wav file, compute its style vector
    and store it. Finally, run normal TTS with the obtained style vector,
    handling long texts.

    Args:
        text (str): The text to be synthesized.
        voice (str): Either the key in voices.json or a .wav file path.
        speed (float): Speed of the generated audio.

    Returns:
        Optional[np.ndarray]: Synthesized audio waveform, or None if something fails.
    """
    # Load voices_data
    try:
        voices_data = load_json(VOICES_JSON_PATH)
        validate_style_vectors(voices_data)
    except ValueError as e:
        print(f"Error loading/validating '{VOICES_JSON_PATH}': {e}")
        return None

    try:
        style_vec = get_or_compute_style_vector(voice, voices_data)
    except ValueError as e:
        print(e)
        return None

    if style_vec is None:
        print("No style vector found or computed; cannot run TTS.")
        return None

    # Parse speed
    speed = parse_speed(speed)

    # Split text into manageable chunks using txtsplit
    print("Splitting text into chunks...")
    text_chunks = txtsplit(text)
    print(f"Text split into {len(text_chunks)} chunks.")

    # Synthesize audio using the core function
    full_audio = synthesize_audio(
        text_chunks=text_chunks,
        style_vec=style_vec,
        speed=speed,
    )

    return full_audio


##############################################################################
# TTS USING A DIRECTLY PROVIDED STYLE VECTOR
##############################################################################
def tts_with_style_vector(
    text: str,
    style_vec: torch.Tensor,
    speed: float = 1.2,
    alpha: float = 0.3,
    beta: float = 0.7,
    diffusion_steps: int = 7,
    embedding_scale: float = 1.0,
) -> Optional[np.ndarray]:
    """
    Perform TTS synthesis using a *directly provided* style vector.

    Args:
        text (str): The text to be spoken.
        style_vec (torch.Tensor): A PyTorch tensor representing the style vector.
                                  Should be shape (1, D) if the pipeline expects a batch dimension.
        speed (float): Speed factor for TTS. (Use parse_speed to handle fancy inputs.)
        alpha (float): Weight for alpha in your inference function.
        beta (float): Weight for beta in your inference function.
        diffusion_steps (int): Number of diffusion steps for your TTS pipeline.
        embedding_scale (float): Classifier-free guidance scale or similar.

    Returns:
        Optional[np.ndarray]: Synthesized audio waveform as a NumPy array (float32), or None if synthesis fails.
    """
    # Ensure style_vec has shape (1, D)
    if style_vec.dim() == 1:
        style_vec = style_vec.unsqueeze(0)  # e.g. (D,) -> (1, D)
        print(f"Unsqueezed style vector to shape: {style_vec.shape}")
    elif style_vec.dim() == 3:
        style_vec = style_vec.squeeze(1)
        print(f"Squeezed style vector to shape: {style_vec.shape}")
    elif style_vec.dim() != 2:
        print(f"Unexpected style vector shape: {style_vec.shape}. Expected 2D tensor.")
        return None

    print(f"Style vector shape for synthesis: {style_vec.shape}")

    # Parse speed
    speed_val = parse_speed(speed)

    # Split text into manageable chunks using txtsplit
    print("Splitting text into chunks...")
    text_chunks = txtsplit(text)
    print(f"Text split into {len(text_chunks)} chunks.")

    # Synthesize audio using the core function
    full_audio = synthesize_audio(
        text_chunks=text_chunks,
        style_vec=style_vec,
        speed=speed_val,
        alpha=alpha,
        beta=beta,
        diffusion_steps=diffusion_steps,
        embedding_scale=embedding_scale,
    )

    return full_audio


##############################################################################
# MAIN CLI
##############################################################################
def main():
    parser = argparse.ArgumentParser(
        description="Script to TTS with either random style sampling or normal style usage."
    )
    parser.add_argument(
        "--text",
        type=str,
        default="Hello from a random style or normal style TTS script!",
        help="Text to be spoken.",
    )
    parser.add_argument(
        "--speed",
        type=str,  # Changed to str to handle inputs like "120%"
        default="1.2",
        help="Speed of the generated audio (e.g., '120%', '1.2').",
    )
    parser.add_argument(
        "--voice",
        type=str,
        default=None,
        help="If not using --randomize, specify a voice key or .wav path to load/compute style.",
    )
    parser.add_argument(
        "--randomize",
        action="store_true",
        help="Use random style sampling from a fitted Gaussian of known styles.",
    )
    parser.add_argument(
        "--output", type=str, default="output.wav", help="Output WAV file name."
    )
    args = parser.parse_args()

    if args.randomize:
        # Approach: random style from distribution
        print("Sampling a new random style vector from 'voices.json' distribution...")
        audio, _ = tts_randomized(text=args.text, speed=args.speed)
    else:
        # Normal approach: use a style key or fallback
        print("Using normal style approach (loading or computing from 'voices.json').")
        if args.voice is None:
            print("Error: --voice must be specified when not using --randomize.")
            parser.print_help()
            return
        audio = tts_normal(text=args.text, voice=args.voice, speed=args.speed)

    if audio is not None:
        # Ensure audio is a NumPy array of type float32
        if not isinstance(audio, np.ndarray):
            print("Error: Synthesized audio is not a NumPy array.")
            return
        if audio.dtype != np.float32:
            print(f"Converting audio from {audio.dtype} to float32.")
            audio = audio.astype(np.float32)

        # Save the concatenated audio
        try:
            sf.write(args.output, audio, 24000)
            print(f"Audio saved to '{args.output}'.")
        except Exception as e:
            print(f"Failed to save audio to '{args.output}': {e}")
    else:
        print("No audio was generated. Check logs above for errors.")


if __name__ == "__main__":
    main()