Spaces:
Runtime error
Runtime error
File size: 7,996 Bytes
fb53ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import torch
import torch.distributed as dist
import os
import os.path as osp
import numpy as np
import copy
import json
from ..log_service import print_log
def singleton(class_):
instances = {}
def getinstance(*args, **kwargs):
if class_ not in instances:
instances[class_] = class_(*args, **kwargs)
return instances[class_]
return getinstance
@singleton
class get_evaluator(object):
def __init__(self):
self.evaluator = {}
def register(self, evaf, name):
self.evaluator[name] = evaf
def __call__(self, pipeline_cfg=None):
if pipeline_cfg is None:
from . import eva_null
return self.evaluator['null']()
if not isinstance(pipeline_cfg, list):
t = pipeline_cfg.type
if t == 'miou':
from . import eva_miou
if t == 'psnr':
from . import eva_psnr
if t == 'ssim':
from . import eva_ssim
if t == 'lpips':
from . import eva_lpips
if t == 'fid':
from . import eva_fid
return self.evaluator[t](**pipeline_cfg.args)
evaluator = []
for ci in pipeline_cfg:
t = ci.type
if t == 'miou':
from . import eva_miou
if t == 'psnr':
from . import eva_psnr
if t == 'ssim':
from . import eva_ssim
if t == 'lpips':
from . import eva_lpips
if t == 'fid':
from . import eva_fid
evaluator.append(
self.evaluator[t](**ci.args))
if len(evaluator) == 0:
return None
else:
return compose(evaluator)
def register(name):
def wrapper(class_):
get_evaluator().register(class_, name)
return class_
return wrapper
class base_evaluator(object):
def __init__(self,
**args):
'''
Args:
sample_n, int,
the total number of sample. used in
distributed sync
'''
if not dist.is_available():
raise ValueError
self.world_size = dist.get_world_size()
self.rank = dist.get_rank()
self.sample_n = None
self.final = {}
def sync(self, data):
"""
Args:
data: any,
the data needs to be broadcasted
"""
if data is None:
return None
if isinstance(data, tuple):
data = list(data)
if isinstance(data, list):
data_list = []
for datai in data:
data_list.append(self.sync(datai))
data = [[*i] for i in zip(*data_list)]
return data
data = [
self.sync_(data, ranki)
for ranki in range(self.world_size)
]
return data
def sync_(self, data, rank):
t = type(data)
is_broadcast = rank == self.rank
if t is np.ndarray:
dtrans = data
dt = data.dtype
if dt in [
int,
np.bool,
np.uint8,
np.int8,
np.int16,
np.int32,
np.int64,]:
dtt = torch.int64
elif dt in [
float,
np.float16,
np.float32,
np.float64,]:
dtt = torch.float64
elif t is str:
dtrans = np.array(
[ord(c) for c in data],
dtype = np.int64
)
dt = np.int64
dtt = torch.int64
else:
raise ValueError
if is_broadcast:
n = len(dtrans.shape)
n = torch.tensor(n).long()
n = n.to(self.rank)
dist.broadcast(n, src=rank)
n = list(dtrans.shape)
n = torch.tensor(n).long()
n = n.to(self.rank)
dist.broadcast(n, src=rank)
n = torch.tensor(dtrans, dtype=dtt)
n = n.to(self.rank)
dist.broadcast(n, src=rank)
return data
n = torch.tensor(0).long()
n = n.to(self.rank)
dist.broadcast(n, src=rank)
n = n.item()
n = torch.zeros(n).long()
n = n.to(self.rank)
dist.broadcast(n, src=rank)
n = list(n.to('cpu').numpy())
n = torch.zeros(n, dtype=dtt)
n = n.to(self.rank)
dist.broadcast(n, src=rank)
n = n.to('cpu').numpy().astype(dt)
if t is np.ndarray:
return n
elif t is str:
n = ''.join([chr(c) for c in n])
return n
def zipzap_arrange(self, data):
'''
Order the data so it range like this:
input [[0, 2, 4, 6], [1, 3, 5, 7]] -> output [0, 1, 2, 3, 4, 5, ...]
'''
if isinstance(data[0], list):
data_new = []
maxlen = max([len(i) for i in data])
totlen = sum([len(i) for i in data])
cnt = 0
for idx in range(maxlen):
for datai in data:
data_new += [datai[idx]]
cnt += 1
if cnt >= totlen:
break
return data_new
elif isinstance(data[0], np.ndarray):
maxlen = max([i.shape[0] for i in data])
totlen = sum([i.shape[0] for i in data])
datai_shape = data[0].shape[1:]
data = [
np.concatenate(datai, np.zeros(maxlen-datai.shape[0], *datai_shape), axis=0)
if datai.shape[0] < maxlen else datai
for datai in data
] # even the array
data = np.stack(data, axis=1).reshape(-1, *datai_shape)
data = data[:totlen]
return data
else:
raise NotImplementedError
def add_batch(self, **args):
raise NotImplementedError
def set_sample_n(self, sample_n):
self.sample_n = sample_n
def compute(self):
raise NotImplementedError
# Function needed in training to judge which
# evaluated number is better
def isbetter(self, old, new):
return new>old
def one_line_summary(self):
print_log('Evaluator display')
def save(self, path):
if not osp.exists(path):
os.makedirs(path)
ofile = osp.join(path, 'result.json')
with open(ofile, 'w') as f:
json.dump(self.final, f, indent=4)
def clear_data(self):
raise NotImplementedError
class compose(object):
def __init__(self, pipeline):
self.pipeline = pipeline
self.sample_n = None
self.final = {}
def add_batch(self, *args, **kwargs):
for pi in self.pipeline:
pi.add_batch(*args, **kwargs)
def set_sample_n(self, sample_n):
self.sample_n = sample_n
for pi in self.pipeline:
pi.set_sample_n(sample_n)
def compute(self):
rv = {}
for pi in self.pipeline:
rv[pi.symbol] = pi.compute()
self.final[pi.symbol] = pi.final
return rv
def isbetter(self, old, new):
check = 0
for pi in self.pipeline:
if pi.isbetter(old, new):
check+=1
if check/len(self.pipeline)>0.5:
return True
else:
return False
def one_line_summary(self):
for pi in self.pipeline:
pi.one_line_summary()
def save(self, path):
if not osp.exists(path):
os.makedirs(path)
ofile = osp.join(path, 'result.json')
with open(ofile, 'w') as f:
json.dump(self.final, f, indent=4)
def clear_data(self):
for pi in self.pipeline:
pi.clear_data()
|