File size: 6,648 Bytes
fb53ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from multiprocessing import shared_memory
import random
import pickle
import time
import copy
import torch
import torch.distributed as dist
from lib.cfg_holder import cfg_unique_holder as cfguh

def singleton(class_):
    instances = {}
    def getinstance(*args, **kwargs):
        if class_ not in instances:
            instances[class_] = class_(*args, **kwargs)
        return instances[class_]
    return getinstance

def is_ddp():
    return dist.is_available() and dist.is_initialized()

def get_rank(type='local'):
    ddp = is_ddp()
    global_rank = dist.get_rank() if ddp else 0
    local_world_size = torch.cuda.device_count()
    local_world_size = 1 if local_world_size == 0 else local_world_size
    if type == 'global':
        return global_rank
    elif type == 'local':
        return global_rank % local_world_size
    elif type == 'node':
        return global_rank // local_world_size
    elif type == 'all':
        return global_rank, \
            global_rank % local_world_size, \
            global_rank // local_world_size
    else:
        assert False, 'Unknown type'

def get_world_size(type='local'):
    ddp = is_ddp()
    global_rank = dist.get_rank() if ddp else 0
    global_world_size = dist.get_world_size() if ddp else 1
    local_world_size = torch.cuda.device_count()
    if type == 'global':
        return global_world_size
    elif type == 'local':
        return local_world_size
    elif type == 'node':
        return global_world_size // local_world_size
    elif type == 'all':
        return global_world_size, local_world_size, \
            global_world_size // local_world_size
    else:
        assert False, 'Unknown type'

class barrier_lock(object):
    def __init__(self, n):
        self.n = n
        id = int(random.random()*10000) + int(time.time())*10000
        self.lock_shmname = 'barrier_lock_{}'.format(id)
        lock_shm = shared_memory.SharedMemory(
            name=self.lock_shmname, create=True, size=n)
        for i in range(n):
            lock_shm.buf[i] = 0
        lock_shm.close()

    def destroy(self):
        try:
            lock_shm = shared_memory.SharedMemory(
                name=self.lock_shmname)
            lock_shm.close()
            lock_shm.unlink()
        except:
            return

    def wait(self, k):
        lock_shm = shared_memory.SharedMemory(
            name=self.lock_shmname)
        assert lock_shm.buf[k] == 0, 'Two waits on the same id is not allowed.'
        lock_shm.buf[k] = 1
        if k == 0:
            while sum([lock_shm.buf[i]==0 for i in range(self.n)]) != 0:
                pass
            for i in range(self.n):
                lock_shm.buf[i] = 0
            return 
        else:
            while lock_shm.buf[k] != 0:
                pass

class nodewise_sync_global(object):
    """
    This is the global part of nodewise_sync that need to call at master process
        before spawn.
    """
    def __init__(self):
        self.local_world_size = get_world_size('local')
        self.b_lock = barrier_lock(self.local_world_size)
        id = int(random.random()*10000) + int(time.time())*10000
        self.id_shmname = 'nodewise_sync_id_shm_{}'.format(id)

    def destroy(self):
        self.b_lock.destroy()
        try:
            shm = shared_memory.SharedMemory(name=self.id_shmname)
            shm.close()
            shm.unlink()
        except:
            return

@singleton
class nodewise_sync(object):
    """
    A class that centralize nodewise sync activities.
    The backend is multiprocess sharememory, not torch, as torch not support this.
    """
    def __init__(self):
        pass

    def copy_global(self, reference):
        self.local_world_size = reference.local_world_size
        self.b_lock = reference.b_lock
        self.id_shmname = reference.id_shmname
        return self

    def local_init(self):
        self.ddp = is_ddp()
        self.global_rank, self.local_rank, self.node_rank = get_rank('all')
        self.global_world_size, self.local_world_size, self.nodes = get_world_size('all')
        if self.local_rank == 0:
            temp = int(random.random()*10000) + int(time.time())*10000
            temp = pickle.dumps(temp)
            shm = shared_memory.SharedMemory(
                name=self.id_shmname, create=True, size=len(temp))
            shm.close()
        return self

    def random_sync_id(self):
        assert self.local_rank is not None, 'Not initialized!'
        if self.local_rank == 0:
            sync_id = int(random.random()*10000) + int(time.time())*10000
            data = pickle.dumps(sync_id)
            shm = shared_memory.SharedMemory(name=self.id_shmname)
            shm.buf[0:len(data)] = data[0:len(data)]
            self.barrier()
            shm.close()
        else:
            self.barrier()
            shm = shared_memory.SharedMemory(name=self.id_shmname)
            sync_id = pickle.loads(shm.buf)
            shm.close()
        return sync_id

    def barrier(self):
        self.b_lock.wait(self.local_rank)

    def broadcast_r0(self, data=None):
        assert self.local_rank is not None, 'Not initialized!'
        id = self.random_sync_id()
        shmname = 'broadcast_r0_{}'.format(id)
        if self.local_rank == 0:
            assert data!=None, 'Rank 0 needs to input data!'
            data = pickle.dumps(data)
            datan = len(data)
            load_info_shm = shared_memory.SharedMemory(
                name=shmname, create=True, size=datan)
            load_info_shm.buf[0:datan] = data[0:datan]
            self.barrier()
            self.barrier()
            load_info_shm.close()
            load_info_shm.unlink()
            return None
        else:
            assert data==None, 'Rank other than 1 should input None as data!'
            self.barrier()
            shm = shared_memory.SharedMemory(name=shmname)
            data = pickle.loads(shm.buf)
            shm.close()
            self.barrier()
            return data

    def destroy(self):
        self.barrier.destroy()
        try:
            shm = shared_memory.SharedMemory(name=self.id_shmname)
            shm.close()
            shm.unlink()
        except:
            return

# import contextlib

# @contextlib.contextmanager
# def weight_sync(module, sync):
#     assert isinstance(module, torch.nn.Module)
#     if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
#         yield
#     else:
#         with module.no_sync():
#             yield

# def weight_sync(net):
#     for parameters in net.parameters():
#         dist.all_reduce(parameters, dist.ReduceOp.AVG)